
King’s College London
Department of Informatics

A Secure Web-server

MSc Individual Project - Final Report

Author:

Stefan Peer

Tutor:

Dr. Laurence Tratt

Academic Year 2011/2012

Dedicated to my family

ii

Acknowledgements

I would like to thank everyone who helped me realising this work and
supported me during the last year of study.

• My university tutor Dr. Laurence Tratt, who proposed this thesis
to me and led me in the right direction.

• My parents, Martha and Arnold Peer, who supported me all the
time and allowed me to pursue this study.

Thank you all! Stefan

iii

Abstract

The research project of this thesis comprises the design, implementation and
test of a secure web-server. We mainly focused on the implementation of the
so called Privilege Separation principles, which state that a program can be
split up into several parts with different privilege levels. By applying these
principles to a web-server, we wanted to create a system, which behaves in a
solid way on attacks of malicious users.
Our server architecture contains three different types of processes, which run
with different privileges. In order to obtain maximum security, clients inter-
act just with unprivileged processes, that cannot harm the system. However
a privileged process is also needed for performing specific tasks. This pro-
cess stays in background, isolated from being directly accessed, and cannot
therefore be easily taken over by an attacker.
The system was developed using the Python programming language and rep-
resents a fully functional web-server, that is able to serve static and dynamic
websites. A major challenge during the project has been represented by the
asynchronous Interprocess Communication. Privilege Separation split up the
program among several processes. Realising the communication between these
processes required to take into consideration various issues related to concur-
rency, efficiency and functionality.
The ultimate goal of this thesis project was to understand, whether Privilege
Separation can make a web-server more secure. We compared our system,
with the world’s most used web-server, Apache. The evaluation showed, that
Privilege Separation influences the security of a web-server in a positive way,
however affects its performance negatively.

iv

Contents

1 Introduction 1
1.1 Context of the research . 1
1.2 Problems addressed . 2
1.3 Approach and Solution . 2
1.4 Results of the work . 3

2 Review 4
2.1 HTTP and CGI . 4
2.2 Processes and Interprocess Communication (IPC) 6
2.3 Web-server architecture . 6
2.4 Privilege Separation . 7
2.5 Web-server based on Privilege Separation 9

3 Specification and Design 10
3.1 Specification . 10

3.1.1 HTTP 1.1 . 11
3.1.2 Virtualhosts . 12
3.1.3 CGI and Privilege Separation . 12
3.1.4 Output Filters . 14
3.1.5 Configuration Files . 14
3.1.6 Log Files . 18

3.2 Architecture . 19
3.2.1 Overview . 19
3.2.2 Interprocess Communication . 21
3.2.3 Class diagram . 24

4 Implementation 27
4.1 Software and libraries used . 27
4.2 Asynchronous requests . 27
4.3 Request processing . 32

4.3.1 Receiving the request . 32
4.3.2 Processing the request . 32
4.3.3 Sending the response . 35

5 Evaluation 36

v

5.1 Research hypothesis . 36
5.2 Evaluation strategy . 36

5.2.1 Additional aspects . 38
5.3 Evaluation results . 39

5.3.1 Additional aspects . 41

6 Conclusions 44
6.1 Summary . 44
6.2 Future work . 45

References 46

A Appendix: Figures 49

B Appendix: Configuration Files 55
B.1 Example of a global server configuration file 55
B.2 Example of a Virtualhost configuration file 57

C Appendix: CGI Scripts 59
C.1 Site1: tries to deletes all the files from site2 59
C.2 Site2: tries to copy all files from site1 to site2 59

D Appendix: Program Listings 60
D.1 sws: start, stop, restart script of the server daemon 61
D.2 webserver.py: contains all three types of processes 62
D.3 httprequest.py: HTTP/CGI parser and request handler 66
D.4 config.py: configuration file parser . 78
D.5 daemon.py: realises the daemon functionality (open source, public domain) 84
D.6 main.py: PyUnit main class for running all unit tests 86
D.7 servertestcase.py: PyUnit test cases for testing web-server functionalities . 87
D.8 configtestcase.py: PyUnit test cases for testing configuration file parser . . 91

vi

1. Introduction

1.1. Context of the research

The invention of the World Wide Web in 1989 by Sir Tim Berners-Lee, was one of the
most important technological occurrences of the last decades. Initially it was developed
just for research purposes and only research institutions had access to it [3]. After it
was made available to the public, everybody was allowed to add content. It attracted
more and more people and a completely new business place emerged. Nowadays we
speak about the so called Web 2.0, which is a social and business component of peoples
everyday life.

The rapid growth of the web was mainly possible due to the fact, that it is an open
standard, and therefore everyone was free to contribute, for example by developing web-
server software. Today, the Apache HTTP Server, an open source project by the Apache
Software Foundation, is the most frequently used web-server worldwide [30]. Since it
offers a large set of functionality and is high-performance [16], it will be often used as a
reference point in this research project.

While the main purpose of the World Wide Web changed over time, also the re-
quirements for web-server software changed. Initially its purpose was just to publish
static resources, i.e., HTML documents, and no complex user interaction was involved.
Nowadays the role of the server software is also to provide dynamically generated web-
sites. These are personalised for a specific user, and often allow him to interact with an
application in the background (ex. Online Shop, Content Management System, Social
Network, etc.). Such systems are usually created using scripting languages like PHP,
ASP or JSP.

However, along with this trend, new security risks emerged: hackers and crackers
started to put web-applications as well as web-server software into their focus of atten-
tion. By exploiting a bug, an attacker could be able to inject malicious code into the
web-server software, and might gain illegitimate access to a website or even to the whole
system [26]. The consequences of such a break-in could be, in the worst situations, the
disclosure of protected data or even the loose of money (ex. Online Banking systems).

The aim of this project is to develop a secure web-server, which behaves in a solid way
on attacks of malicious users. Of course, to guarantee that a software is safe, i.e., does
not contain faults, is hardly possible, but one can build a software in a way, that in case
of a failure it does not open a door to the whole system. This leads us to the concept
of the Least Privilege, stated by Jerome Saltzer: every program and every user should
operate using the least amount of privilege necessary to complete the job [27].

1

1.2. Problems addressed

Our research focused on the development of a web-server, which is mainly supposed to
fulfil the following two security properties:

1. A website hosted on the web-server should not have access to other websites, hosted
on the same server, or administrative access to the whole system - even not in the
situation of a failure.

2. A failure in the web-server should not give an adversary the possibility to take
over the whole system.

Nowadays there exist many small websites, that are for example blogs or represent
companies. These are usually dynamic websites and are often based on a Content Man-
agement System. Because of their smallness, with respect to requests per seconds, stor-
age space needed and bandwidth needed, and the performance of nowadays hardware,
hosting providers do not need to provide a separate dedicated or virtual server for each
single website. One physical server, running a web-server instance, has enough resources
for handling dozens of such small websites. It is then the web-server’s task to distinguish
between the different websites.

However the problem is, that web-servers are usually designed in a way, that they don’t
separate the privileges of the different websites, hosted on the same server [7]. Consider
for example Apache, which is running by default as www-data user: every single website
that is hosted by Apache, needs to have set its privileges in a way, that the www-data
user can access it. This means that one dynamic website could easily access content of
another website, because both run on the same web-server, under the same user. This
reflects a security problem. Apache provides extensions (suEXEC) and configuration
mechanisms that try to solve this problem, but they are not enabled by default and are
not build into the server’s core [10].

The second problem of web-servers like Apache is, that a superuser process is listening
for incoming connections. If an adversary would take over this process, because of a bug
in the web-server software, he could possibly gain superuser privileges on the whole
system [26].

The main task of this project was to come up with a web-server architecture and an
implementation that solves these two problems. However, beside the security aspects, we
also considered performance to be important for our web-server. The World Wide Web
has now hundreds of millions of users [3] and many users visit websites simultaneously.
Therefore it is essential for web-servers to handle requests in parallel and as fast as
possible, in order treat users equally, and don’t let them wait.

1.3. Approach and Solution

Initially we defined the functional requirements for the software. We wanted the web-
server to be a cohesive software package, that can also be used in practice. Therefore, all
basic web-server functionality, that is needed by nowadays dynamic websites, should be

2

included. We made a rough sketch of the architecture, in order to plan how to build the
server, supporting the security properties, stated in section 1.2. These could be achieved
using the so called Privilege Separation principles: different parts of the web-server, i.e.,
processes, should run with different privilege levels and each part should just gain those
privileges it really needs for performing its task [25]. This concept will be explained in
more detail in further sections.

Already in the beginnings the Python programming language was selected to imple-
ment this project. The main reason for choosing Python was, that it is an object oriented
language and therefore allows a clear structuring of the code. Additionally it provides a
large set of libraries and system interfaces [19], which are needed for developing server
software. It allows programmers to perform powerful tasks without writing a lot of neg-
ligible code. Furthermore Python is portable and runs on many operating systems. This
project was build and tested on Linux (Ubuntu), however with minor changes it should
also run on other systems.

The web-server was developed in an incremental manner: we always tried to have a
running system, and introduced new functionality or changed old, step by step. In this
way we could compare different solutions, i.e., architectures, and decide which is the
best way to proceed. However, because of this approach, a lot of code that was written
during development, is not present in the final release. In return the quality of the final
software is supposed to be better.

In parallel to the development of the web-server, we created software tests using
PyUnit [21]. So errors could be detected more easily, without performing regression
testing manually.

In the final stage of the project we set up a few sample websites, in order to evaluate
the security properties of the web-server. Additionally we made some benchmarks to
evaluate its performance.

1.4. Results of the work

At the beginning of this research project, I was not familiar with the Python program-
ming language. I learned it step by step by myself, while developing this web-server. To
achieve the desired result, several different programming techniques and concepts have
been used, i.e., object oriented programming, process forking, process communication,
process privileges, the select API, HTTP and CGI parsing, etc. It was all new to me in
Python and I sometimes got stuck and had to search new solutions for implementation
problems. The course of the project was followed generally as it was planned at the
beginning using a Gantt Chart (see Appendix, Figure A.9).

Finally our work resulted in a fully functional web-server, which is based on Privilege
Separation principles. Furthermore the software contains all the basic functionality that
a web-server needs, in order to deliver dynamic websites, such as support for HTTP,
CGI scripts, configuration and log files, error documents, output filters and more.

The evaluation showed, that the server meets the security properties, described in
section 1.2 and therefore performs Privilege Separation correctly.

3

2. Review

In order to facilitate communication over the Internet, a set of communication proto-
cols have been defined by the IETF (Internet Engineering Task Force). This is the
Internet Protocol Suite, which consists of four layers, each dealing with different issues,
such as routing, reliability, flow control, etc. The four layers are called Link Layer
(ex. Ethernet), Internet Layer (ex. IP), Transport Layer (ex. TCP) and Application
Layer (ex. HTTP) [5]. A host must implement all these layer in order to communicate
using the Internet. In this research project we will mainly deal with the Application
Layer, since it is the top layer of the Internet Protocol Suite, and lower layers are han-
dled by operating system or hardware.

2.1. HTTP and CGI

The World Wide Web is an implementation of the Application Layer and is based on a
client-server architecture: clients are usually Browsers, which request documents from
web-servers. The protocol used is called HTTP and stands for Hyper-Text Transfer Pro-
tocol. In this section we want to describe the aspects of HTTP that are most important
in the context of this project. The full HTTP specification can be found in the RFC 2616
document [31].

There exist two kind of HTTP messages: requests from client to server and responses
from server to client [33].

The format of a request message is a series of newline-delimited lines:

• Request Line: request method, URI and HTTP version.

• Message Headers: provide information about message transmission and proto-
cols (general headers), about the request (request headers) and about the data
(entity headers).

• Message Body: data to be transferred (if any).

There are 8 request methods in total, but the three most important ones, that will be
considered in this project are:

• GET: retrieve resource identified by the URI.

• POST: submit resource to the server.

• HEAD: identical as GET, but the server must not return a message entity body.

Like the request message, also the format of the response message is a series of newline-
delimited lines:

4

• Status Line: HTTP version, status code and reason phrase.

• Message Headers: provide information about message transmission and proto-
cols (general headers), about the response (response headers) and about the data
(entity headers).

• Message Body: data to be transferred (if any).

The status code element is a 3 digit number representing whether the request was
fulfilled correctly [34]. The following 5 status code categories exist:

• 1xx Informational: Request received, continuing process.

• 2xx Success: The action was successfully received, understood, and accepted.

• 3xx Redirection: Further action must be taken in order to complete the request.

• 4xx Client Error: The request contains bad syntax or cannot be fulfilled.

• 5xx Server Error: The server failed to fulfil an apparently valid request.

Initially, HTTP was just designed for delivering static content, for example HTML
files, stored on the server. The URI of a request can be mapped to a location on the
server’s file system, and the content of the requested file will be returned in the message
body of the response. For every request for a specific file, the response’s message body
will always be the same. However nowadays, as already stated in the previous chapter,
websites are mostly dynamic, and they interact with an application in the background.
They are personalised for individual users (ex. shopping cart of an online shop), and
the content therefore cannot be simply retrieved from a file, but must be generated
dynamically by a script or an application (ex. PHP, ASP, JSP, etc.). A standardised
protocol for achieving this dynamic is CGI, which stands for Common Gateway Interface.
Its current version 1.1 is defined in the RFC 3875 document, and basically describes how
a web-server can delegate a HTTP request to an executable file, which then generates
the response [17].

The server is responsible for managing connection, data transfer, transport and net-
work issues related to the client request, whereas the CGI script handles the application
issues, such as data access and document processing [17]. On a request, the server de-
termines the script to be executed, by the request URI, and prepares a set of so called
meta-variables like, SERVER NAME, REMOTE ADDR, REQUEST URI, etc. It then
invokes the script as an executable program, and passes all meta-variables as system
environment variables to the script. The optional message body of the HTTP request
will eventually be provided to the script at the standard input file descriptor.

The CGI response can have several formats, but the most important one, to be men-
tioned here, is the document response: the CGI script provides the content, that is
supposed to be delivered back to the client, at the standard output file descriptor [17].
The web-server fetches it from there, and packs it into a HTTP response message.

5

2.2. Processes and Interprocess Communication (IPC)

A process is a program instance, that is currently being executed. Every process is
running with the privileges of a particular system user and has its own memory address
space, which can not be accessed by other processes [29]. On Unix systems, processes are
created using the fork system call [24]. It creates an exact copy of the calling process,
so that both, the parent and the new child process, afterwards, have the same memory
image and the same open file descriptors. However, their address space is different. So
tasks, that will be executed after the fork on one process, do not affect the other process.

There exist processes called daemons, that stay in background, detached from any
terminal, and provide services, such as web-servers, mail-servers, etc.

Software is often build out of several processes, for achieving parallelism and therefore
better performance, but also for security reasons (see section 2.4). In this case, different
processes often need to communicate with each other, but since they have separate ad-
dress spaces, direct memory accesses between them are not possible. Therefore, modern
operating systems provide several methods for Interprocess Communication (IPC) [28],
such as:

• Shared Memory: A memory space in RAM, that is shared between processes,
i.e., all processes can read and write.

• File: A simple file stored on the file system. Data can be read and written to the
file by all processes that have access to it.

• Pipe: A FIFO data stream between two processes. If the stream is bidirectional,
both processes can send and receive data.

• Socket: Similar to a pipe, but supports also communication over a network,
between processes that are on different hosts.

• Signal: Signals can be sent to processes, in order to notify them, that an event
has occurred.

• Remote Procedure Calls: Middleware that deals with communication issues
between processes.

2.3. Web-server architecture

In this section we want to give a brief insight in the architecture of a web-server, referring
generally to the Apache 2 implementation. As already described in earlier sections, web-
servers communicate using the HTTP Application Layer protocol. This sits on top of
the TCP/IP protocol, therefore a web-server is also a TCP server, and listens on a
given port (ex. 80) for incoming connections. Clients, i.e., Browsers, establish a TCP
connection to that port, for being able to issue their HTTP request and getting back a
HTTP response.

Considering Apache 2, connection management and request processing is not all done
by a single process, but by a multiprocess architecture. This has several advantages,
such as higher performance, better stability and better availability [29, 37]. The Apache

6

web-server comes with different multiprocessing modules (MPMs), which are mainly
responsible for the binding to network ports, accepting requests and dispatching children
to handle the requests [14]. For our research the Prefork module was the most relevant,
which is also the default on Unix. It is based on the fact, that using the fork system
call, it is possible to create identical copies of existing processes, i.e., a parent process
spawns child processes.

In Apache’s architecture, there is one parent process, that is a superuser process, and
listens for incoming connections. This process is often also called listener or control
process. It is mainly responsible for launching child processes and delegating requests
to them. All the request processing is done by these child processes, which minimises
the work load for the listener. This approach improves concurrency, since the listener,
after request delegation, is immediately ready for accepting new connections. Another
performance improvement is realised by the pre-fork mechanism: the control process
maintains several spare child processes, which stand ready for serving incoming requests
immediately [15]. This helps to reduce the delay time, the operating system needs to
execute the fork system call [24].

The request processing stage, that is done by the child processes, can be very com-
plex, depending on the modules that are used. There are several phases, between the
arrival of a request and the delivery of a response. The main phase is called content
generation [6], during which generally either a static file will be retrieved or a CGI script
will be executed. Before that phase, the request is passed through several other stages,
such as parsing the request headers, finding a matching Virtualhost, checking whether
the requested file is jailed into the document root directory, checking the existence of
the file, etc. After the content generation phase there can be also several stages, such as
logging of the request or modification of the output data using filters.

A very important aspect for this project is related to the content generation phase,
and refers to the access privileges of files on the file system. All the child processes, that
handle requests, run under the same system user (ex. www-data, see Figure 2.1). This
user must be able to have access to all files served by the web-server [15]. This exigence
introduces a security problem, because the privileges for all websites, running on the
same web-server, are therefore the same, and unrestricted file accesses across websites
are possible, via CGI scripts.

2.4. Privilege Separation

As already explained in previous sections, services that are accessible from the Internet,
are generally vulnerable to attacks from malicious users. They often try to exploit a
bug, which gives them control over the system. There are several approaches that help
to find or avoid bugs, such as software testing or the use of type-safe programming
languages [36]. However, it is hardly possible to guarantee that a software contains no
errors. Even with excessive software testing, there might still remain an undetected
bug, and therefore nobody knows what could possibly happen if it will be exploited.
However, one can try to minimise the consequences of a software failure, by following

7

Figure 2.1.: Request processing of Apache: a superuser (root) process is listening for
incoming connections, and forks request handling processes, that run under
the www-data user.

the concept of the Least Privilege, stated by Jerome Saltzer: every program and every
user should operate using the least amount of privilege necessary to complete the job [27].
A program that runs with no privileges will harm, even in case of a failure, the system
less, than a program with superuser privileges. However, simply running a program with
no privileges might not always be possible, since some tasks of a program often need
superuser privileges. This leads us to the concept of Privilege Separation.

Privilege Separation describes a programming style, where a program is split up into
several parts which have different privilege levels. One can distinguish between privileged
parts, called monitors, and unprivileged parts, called slaves [2]. Usually an application
is build of several slaves, but just one monitor. Slaves can perform just operations that
do not require privileges, while for the monitor these restrictions do not count; usually
the monitor has superuser privileges. However, if a slave needs to perform an operation
that requires privileges, it has to ask the monitor to do this. Communication between
the monitor and the slave happens via a well defined channel, and the monitor, prior
to execute the requested operation, validates it and checks if it is permitted. After the
execution the result is communicated back to the slave [25].

This architecture usually increases the complexity of software, but it does not limit its
functionality. The advantage is, that the amount of code, that is executed with superuser
privileges, can be reduced [25]. This in turn limits the scope of software errors: if an
adversary takes over an unprivileged slave, because of a programming bug, there is no
way to execute illegitimate code, that requires privileges. So the adversary controls just
an unprivileged part of the application and cannot break out of this part, for taking over
the entire system. However, if an adversary would take over the monitor, this would
introduce a security problem and might lead to the illegitimate execution of privileged
code. Therefore, the monitor should be isolated from the outside, i.e., not accessible
directly from the Internet.

8

2.5. Web-server based on Privilege Separation

The main goal of this project was to solve the problems of existing web-servers, like
Apache, that have been described so far, by building a secure web-server, which is based
on Privileges Separation. In this context, privileges can be separated at process level,
since each process runs as a system user, and therefore has predefined privileges [29].
This changes a few aspects in the web-server architecture. Processes which are vulnerable
for being taken over, i.e., do interact directly with users or clients, should be unprivileged
and have just those privileges that they really need [27]. In this way, in case of being
taken over, they cannot harm the system as much as privileged processes could. We
stated in section 2.3, that Apache, in combination with the Prefork module [15], is build
out of two kinds of processes: unprivileged request handling processes and a privileged
listener/control process.

Applying Privilege Separation and the concept of the Least Privilege to a web-server
means, that a request handling process should detect the privileges of the website it
serves, and run with privileges, that grant access to just this website. This stands in
contrast to Apache’s architecture, where all request handling processes run with the
same privileges (ex. www-data). So, for example, if a process’ responsibility is just to
serve website A, it should not have access to website B.

Additionally, the listener process should be unprivileged, since it is accessible directly
via the Internet. However, in this case, all parts of the web-server would be unprivileged.
This leads to the problem, that tasks, that require privileges, such as process forking or
the binding to network ports, are not executable any more. Since those are essential for
a web-server, we had to come up with an architecture that solves this problem.

9

3. Specification and Design

3.1. Specification

The main goal of this project was the development of a secure web-server, that is based
on the Privilege Separation principles. These have already been explained so far. We
just wanted to point out here the two main points:

1. A website, i.e., a CGI script, hosted on the web-server should not have access to
other websites of the same server, or administrative access to the whole system,
even not in the situation of a failure.

2. A failure in the web-server should not give an adversary the possibility to take over
the whole system. Therefore the process connected to the Internet, i.e., listening
for incoming connections, should not have superuser privileges.

However in addition to these security aspects, the web-server was supposed to be fully
functional, so that it can be used in practice and serve nowadays dynamic websites. We
took the Apache server as an example and selected a small subset of its functions, that
we considered as relevant for this project.

The most basic requirement is the support for the HTTP 1.1 protocol, specified in the
RFC 2616 document [31]. Beside the delivery of static content, the server was considered
also to support CGI scripts (RFC 3875 [17]), so that both dynamic and static websites
can be served. In order to test the security features, being explored in this project,
the server should also support Virtualhosts, i.e., support the hosting of several different
websites.

Additionally we wanted the web-server to be a cohesive software program, which is
able to run as a system service (daemon). It should fetch, at start up, global and website
specific settings from configuration files, and should log website accesses and errors, in
real time, in separate files. The web-server should also provide error documents, using
HTTP status codes (4xx, 5xx), if a resource could not be retrieved successfully. It is
also supposed to support Output Filters, i.e., scripts, that are able to modify the HTTP
response body, before it gets returned to the client. All these requirements will be further
explained in the next sections.

Since we wanted the web-server to be used in practice, we also considered performance
as important. However, this was not a main requirement for this project, because we
mainly focused on security.

10

3.1.1. HTTP 1.1

In order to meet the HTTP standard, set by the Internet Society, the web-server to be
developed has to comply strictly with the the HTTP 1.1 specification, defined in the
RFC 2616 document [31]. However, because of the extensiveness of this specification
and the relative short project duration, only the most relevant parts of it have been
considered for being implemented.

Request

The RFC document specifies 8 request methods, such as GET, POST, PUT, etc. How-
ever, nowadays mainly three of them are used for retrieving and submitting resources,
and therefore only those have been considered as relevant for this project: GET, POST
and HEAD. The purpose of each is explained in section 2.1 or in RFC 2616.

The web-server is supposed to accept any HTTP request header. Headers are optional,
except the Host header, which is obligatory in some cases and specifies the internet host
(ex. sws.peerweb.it), and the port number (ex. 80) of the resource being requested [32].
If available, HTTP headers such as User-Agent or Referer should be used for logging
purposes.
The following shows an example request:

GET /index.html HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:14.0) Gecko/20100101 Firefox/14.0.1

Response

The HTTP specification defines 5 status code categories, and each category specifies
several status codes. In this project, the following codes have been considered as relevant:

• 200 OK: the request was successful.

• 301 Moved Permanently: the client should forward automatically to the URL
specified in the Location response header.

• 400 Bad Request: there was an error in parsing the request, because of a wrong
syntax or a missing header.

• 403 Forbidden: the requested resource was found, but not allowed to be accessed.

• 404 Not Found: the requested resource was not found.

• 500 Internal Server Error: a server error occurred, or there was a problem with
a CGI script.

In case of a 403, 404 or 500 error, the server should return user defined error documents,
i.e., a static or dynamic web-page, instead of a predefined error message in plain text.
Error documents can be specified in global or website specific configuration files. More
about that will be explained in section 3.1.5

11

Like for the request, also the HTTP response includes several headers. The server is
supposed to set the following headers automatically:

• Connection: close: HTTP 1.1 supports persistent connections, however, this
feature is not included in this project. Therefore, the web-server supports just one
HTTP request per TCP connection, and closes the connection after each request.

• Server: SWS/1.0: the name and the version of the server (SecureWebServer/1.0).

• Date: the current date and time of the server.

• Content-Type: the content type of the data in the response body.

• Content-Length: the length of the content in bytes (optional).

• Location: in combination with the 301 status code, defines the location for a
client redirect.

However consider, that CGI scripts can influence the HTTP response. Therefore it
is also possible that other status codes or headers occur. Additionally it is possible
to specify response headers in configuration files, that will be set automatically in any
HTTP response, that matches a particular context (see section 3.1.5).

3.1.2. Virtualhosts

The web-server is supposed to be able to handle more than one website. Consider for
example two domains, site1.sws.peerweb.it and site2.sws.peerweb.it, pointing both to the
same server, but containing different websites. In order to serve these websites, the server
must first be able to distinguish the two host names, and then be able to know where to
find the files of each website, i.e., locate its document root directory on the servers file
system.

The host name can be identified either by the Host header field of the HTTP request
(ex. Host: site1.sws.peerweb.it), or by the request URI, if it matches the following format:
http://site1.sws.peerweb.it/page.html [35].

In order to assign a host name to a document root directory on the server, so called
Virtualhosts can be specified in configuration files. They assign one or more domain
names to a directory on the server, inside which all files and subdirectories are supposed
to be stored [11]. Consider, that for security reasons, the web-server has to make sure,
that a user can’t access files outside of this directory.

3.1.3. CGI and Privilege Separation

In order to be able to generate web pages dynamically, just at the moment of the
request, the web-server is supposed to support CGI scripts. How this works has already
been explained in section 2.1. The web-server is supposed to meet fully the CGI 1.1
specification, defined in the RFC 3875 document [17], therefore we do not describe
details of this here again.

On every HTTP request, the server must be able to distinguish whether the requested
file is a CGI script or a static resource, since they have to be treated differently. One

12

possibility would be to check, if the resource is an executable file, and handle it as
CGI script in that case. But this might not be a good solution in any case, because the
executable file could also be an application, that is offered for download, or be executable
by mistake. A better solution is to define contexts, in which files are handled as CGI
scripts. This can be done by introducing Virtualhost-specific configuration directives,
like a Directory of the Apache implementation [8]. In this way, one can, for example,
define the following context: a directory, in which all files with a specific extension are
handled as CGI scripts. Files, that do not match this context, are handled as regular
documents.

Furthermore, CGI scripts need some special treatment by the server, because they
could contain errors, or could try to perform illegitimate actions. A script should not
affect the behaviour and the stability of the web-server or other websites. As already
described earlier, Privilege Separation is considered the main solution to this: different
websites are served by processes with different privileges. Provided that these privi-
leges are defined properly, no interference is possible, because processes are subject to
restrictions of the operating system.

There are several approaches to include Privilege Separation into a web-server. The
basic idea is to have for each Virtualhost a different user, that is going to serve the
website. Therefore, all files and folders in the document root directory must have set
the privileges properly, so that just the serving user can access them. In order to inform
the web-server about the privileges of each Virtualhost, we came up with two different
ideas. The first was to specify for each Virtualhost the user-id and the group-id in
the configuration file. However, we realised soon, that this is not necessary and just
makes the system inflexible. One would have to apply first the privileges to all files
and folders, and then specify them again in the Virtualhost settings. This leads to
redundancy and makes the system more complicated to configure, and more vulnerable
to misconfiguration. So we agreed, that it is more simple, if the web-server detects the
owner and the group of the requested file, and sets the privileges of the handling process
accordingly.

Regarding CGI scripts, there are also error related issues, that have to be considered.
What if a developer introduces an endless loop in a CGI script? In this case, the script
process would consume system resources, that won’t be released until the server gets
restarted. This problem is supposed to be solved the same way as in Apache: CGI scripts
get killed by the server after a specific time-out, which can be defined in configuration
files. Note, that for slow scripts, one should set the time-out value high enough. If an
aborted or failed CGI script hasn’t streamed yet any response data to the client, the
server should respond with an Internal Server Error (500). In case some data has already
been sent out, the web-server should just close the connection.

Further issues with CGI scripts are related to file properties. What if a CGI script is
not an executable file? What if it is owned by the superuser? A CGI script which is not
executable, should just return an Internal Server Error (500), like Apache does it.

As already explained earlier, the web-server is supposed to detect the owner of a
requested file, for determining the privileges of the handling process. Consider, that CGI

13

scripts should never be executed with superuser privileges, because this would introduce
security problems. If a CGI script is owned by the superuser, one option would be to
return an Internal Server Error (500) and forbid the execution. However, we considered
this as a too strict constraint, and decided to run those CGI scripts under a predefined
user, that can be specified in a configuration file.

3.1.4. Output Filters

The resulting web-server is also supposed to support so called Output Filters [9]. These
are scripts, that can be chained one after the other (pipe-lining), and the HTTP re-
sponse’s body data is passed, i.e., filtered, through them, before finally returned to the
client. Every filter script gets the input data on stdin and is required to write the output
data on stdout.

Output Filters allow, for example, compression (gzip) or other data modifications,
right before the HTTP response will be sent. In most cases the presence of a filter is not
apparent to the client. Filters are supposed to be defined in configuration files.

Consider that the Privilege Separation principles do also apply for Output Filters:
filter scripts have to be executed by the owner of the requested resource, not to confuse
with the owner of the filter script.

Figure 3.1.: Example of a configuration with two Output Filters

3.1.5. Configuration Files

The web-server, to be developed in this project, can be configured using external config-
uration files. There is one global configuration file for the whole web-server, and separate
configuration files for each Virtualhost. The structure of these files is very similar to
Apache’s.

Global web-server configuration directives

• Listen: Port on which the server is listening for incoming connections.
Default value is 80.

• Host: Host on which the server is listening for incoming connections.
Default value is 0.0.0.0.

• User: User name or user id of the listener process. This user will also be used for
request handling child processes, if the file owner of the requested resource cannot
be determined or is the superuser.

14

• Group: Group name or group id of the listener process. This group will also be
used for request handling child processes, if the file owner of the requested resource
cannot be determined or is the superuser group.

• HostnameLookups: Determines whether the server performs hostname lookups,
i.e., maps IP addresses (ex. 46.4.17.148) to hostnames (ex. sws.peerweb.it). This
should be turned off for performance reasons.
Default value is Off.

• DefaultType: Content type, that the server delivers for documents, whose type
could not be determined.

• AddType: Allows to manually add file extension to content-type associations.
It causes the server to set for all files with the specified extension, the specified
content type.
This configuration directive can be used multiple times.
Usage: AddType .css text/css

• CGITimeout: Seconds after which CGI scripts get aborted automatically, if not
terminated yet.
Default value is 30.

• CGIRecursionLimit: Specifies for a client request, the maximum number of
allowed, sequential, server redirects in CGI scripts. This is to prevent endless
loops in redirections.
Default value is 10.

• ErrorDocumentRoot: Directory which contains all the error documents.

• ErrorDocument: Specifies for a given status code, the error document, that the
server will provide in case of such error.
This configuration directive can be used multiple times.
Usage: ErrorDocument 404 notfound.html

• ErrorLogFile: Path to the standard error log file.

• AccessLogFile: Path to the standard access log file.

• CommunicationSocketFile: Path to the file, which will be used as Unix socket
for process communication.

• ListenQueueSize: Size of the listen queue for incoming connections, i.e., number
of requests that can be accepted simultaneously by the listener process.
Default value is 10.

• SocketBufferSize: Size of the communication buffer, used for Interprocess Com-
munication, in bytes.
Default value is 8192.

An example configuration file is shown in the Appendix B.1.

15

Virtualhost configuration

Every Virtualhost configuration must be stored in a separate configuration file. Each
file must at least contain the following two directives:

• DocumentRoot: Root directory for the documents being served by this Virtu-
alhost.

• ServerName: Main hostname which maps to this VirtualHost.

Exactly one Virtualhost configuration file must contain the DefaultVirtualHost direc-
tive, which specifies the default Virtualhost. It will be used by the web-server if no other
matching can be found, i.e., the host, specified in the HTTP request, was not found on
the server.
Further configuration directives are:

• ServerAlias: Additional hostname, beside the main ServerName, which also maps
to this Virtualhost.
This configuration directive can be used multiple times.

• ServerAdmin: E-mail address of the person, that is responsible for this Virtual-
host.

• ErrorLogFile: Path to the error log file for this Virtualhost.
If not specified, the error log file, specified in the global configuration file, will be
used.

• AccessLogFile: Path to the access log file for this Virtualhost.
If not specified, the access log file, specified in the global configuration file, will be
used.

• ErrorDocumentRoot: Directory which contains all the error documents for this
Virtualhost.
If not specified, the ErrorDocumentRoot, defined in the global configuration file,
will be used.

• ErrorDocument: Specifies, in the context of the Virtualhost, for a given status
code, the error document, that the server will provide in case of such error.
This configuration directive can be used multiple times.
If not specified, for a given error code, the corresponding error document, defined
in the global configuration file, will be used.
Usage: ErrorDocument 404 notfound.html

• ExtFilterDefine: Defines an output filter script: assigns a name (ex. filter1) to
a script (ex. /bin/filter.sh).
This configuration directive can be used multiple times.
Usage: ExtFilterDefine filter1 cmd=”/bin/filter.sh param1”

16

Configuration directives sometimes should be valid just in a particular context, and
not for the whole Virtualhost. Because of the limited time available for this project
we considered just one type of context, which is directory. A directory can be defined
using a tag: <directory ”/dir/subdir”>. All directives, listed between the opening and
the closing tags, are just valid for the specified directory and all subdirectories. The
following configuration directives can be used inside a directory :

• DirectoryIndex: Defines a list of files to look for, if the requested resource is a
directory.
This configuration directive can be used multiple times.
Usage: DirectoryIndex index.php index.html index.htm

• CGIHandler: Defines a filename extension that will be considered as a CGI
script. Optionally also the executing program for the script can be defined (ex. bash,
php-cgi, etc.).
This configuration directive can be used multiple times.
Usage: CGIHandler .php /usr/bin/php-cgi

• SetOutputFilter: Defines a chain of output filters, that are applied to every
request that matches this context.
Usage: SetOutputFilter filter1;filter2;filter3
Consider that filter1, filter2 and filter3 must have been defined previously using
ExtFilterDefine.

• AddHeader: Allows to define a response header, that will be automatically set
in every response.
This configuration directive can be used multiple times.
Usage: AddHeader ”Content-Encoding” ”gzip”

• AddType: Allows to manually add file extension to content-type associations.
It causes the server to set for all files with the specified extension, the specified
content type.
This configuration directive can be used multiple times.
Usage: AddType .css text/css

There is one further directive, that can just be used inside a directory tag, which
is called StopInheritance. It can be defined for a subdirectory, and allows to stop
the automatic inheritance of a directive. Consider for example a /filter directory, for
which an Output Filter was defined. The filter would also be valid for a /filter/pictures
directory, since it is a subdirectory. However, defining ”StopInheritance SetOutputFilter”
inside the /filter/pictures directory, removes the output filter setting for this directory
and all its subdirectories.

StopInheritance can be used multiple times, with parameters such as ”All”, ”Directo-
ryIndex”, ”CGIHandler”,”SetOutputFilter”, ”AddHeader” and ”AddType”.

An example configuration file for a Virtualhost is shown in the Appendix B.2.

17

3.1.6. Log Files

Since the server is running as a daemon, eventual errors cannot be shown on standard
output, but have to be logged. Two kinds of log files should be supported: access log
and error log. The access log file stores information about every document request.
The error log file contains CGI script errors, file not found errors, forbidden errors, etc.
The structure of these files is exactly the same as Apache’s [13], which means that log
analyser tools that work for Apache, can also be used for this server. An example for
this is Webalizer [1] (see Appendix, Figure A.8).

Access Log File

The access log file is structured in the following way:
hostname:serverport client IP - - [request time] ”request URI ” ”referer” ”user agent”

Figure 3.2.: Three example log entries of an access log file

Error Log File

The error log file is structured in the following way:
[request time] [error level] [client client IP] error message

Figure 3.3.: Three example log entries of an error log file

18

3.2. Architecture

3.2.1. Overview

In this section we want to show how we designed a web-server, based on Privilege Sep-
aration and the concept of the Least Privilege. In section 2.3 we described the basic
structure of Apache and which processes are involved in serving requests. There is a
privileged listener process, which is responsible for accepting new connections on the
server-port (usually 80). It delegates incoming requests to a pre-forked, unprivileged,
request handling process, which generates the HTTP response (see Figure 2.1).

However, this architecture does not meet our definition of a secure web-server because:

1. A website, i.e., a CGI script, hosted on the web-server could access other websites,
hosted on the same server.

2. A superuser process represents the interface to the Internet: a failure in this process
could possibly give an adversary administrative access to the whole system.

In order to comply with our definition, we modified some concepts of Apache’s archi-
tecture. First of all, an unprivileged slave process is introduced, which is connected to
the outside and listens for incoming connections, instead of a superuser process. How-
ever, a superuser control process is still needed for forking child processes that handle
requests. This so called monitor process stays in background and communicates with
the slave process via a defined communication channel (see section 3.2.2). Every valid
request will be forwarded by the slave to the monitor, which then delegates it to a child
process for handling it.

Figure 3.4.: Request processing with Privilege Separation: an unprivileged process (lis-
tener) is listening for incoming connections and forwards valid requests to a
superuser process (root). This then forks request handling processes, that
run under different users for each website.

Figure 3.4 shows, that also the delegation part differs from Apache’s architecture: in
order to meet the Privilege Separation principles and the principle of the Least Privilege,

19

request handling processes run with the privileges of the file being requested. In that
way, in case of the execution of a CGI script or even in case of a failure, they can’t access
parts of the system they are not allowed to. For example, if a process responsibility is
just to serve website A, it has no access to website B assuming that both websites are
owned by different users, but on the same server.

We already mentioned earlier, that Apache performs pre-forking of request handling
processes, for performance reasons [15]. However, in our architecture this methodology
is not trivial, since the user, under which the request handling process is going to run, is
not known in advance. Therefore, one would need to create several pre-forked processes
for every system user that owns a website. Apache has in its standard configuration
about 10 pre-forked processes, that stand ready for serving requests, and can serve any
website. Let’s assume a server hosts 50 small websites. Because of their smallness one
can for example assume, that at most 10 percent of them are visited concurrently. In
this case Apache could provide 2 processes per website. However, in order that our
web-server can provide 2 processes per website, we would need 100 pre-forked processes
for the 50 websites. This is because the websites being visited are not known in advance,
and according to the Privilege Separation principles, one pre-forked process can serve
just the website it is assigned to. In terms of system resource usage, it is a big difference,
whether there are 10 or 100 server processes running concurrently. Therefore, we decided
not to perform pre-forking, and accepted the delay at request time, i.e., the increase of
the response time, by the time the operating system needs to execute the fork call [24].

In a nutshell, our architecture contains three types of processes:

• Listener: An unprivileged listener process, which is responsible for accepting
new connections on the server-port (usually 80).

• Root: A privileged superuser process, which stays in background and does not
communicate directly with the Internet. It performs administrative tasks such as
process forking.

• Request handler: An unprivileged request handling process, which is respon-
sible for processing an incoming request, i.e., generating a HTTP response message
out of a request.

Figure 3.5.: UML component diagram, which illustrates how the three processes work
together. The listener component is able to accept HTTP requests, via the
HTTP interface. It forwards valid requests to the root component, which
instantiates for every request a separate request handler.

20

3.2.2. Interprocess Communication

We described the general picture of the architecture so far, and the roles of the different
types of processes. However, an important aspect is how the processes communicate
with each other. We already described in section 2.2, that simple method calls between
objects, maintained by different processes, are not possible, because one process can’t
access the memory space of another. Therefore Interprocess Communication is needed.

Let’s initially step back and define the set up process of the server, i.e., how it will
be instantiated. The server is just able to serve requests, when the listener and the root
process are both running. Without a listener process the server is not reachable, and
without the root process it cannot handle requests, since there is no privileged part, that
can create request handling processes. On start-up, the server, therefore has to create
both processes, i.e., one process can be forked out of the other. The listener process
first starts as a superuser process, and performs some initialisations, like parsing the
configuration files, creating listening sockets, etc. After this, it creates the root process,
using the fork system call. This process automatically inherits a copy of all objects from
the listener (side effect of fork, see section 2.2), and so, for example, both have access to
the server configuration. After the fork, both processes go their own way (see Figure 3.6).
The listener process binds itself to a network port, and gives up its privileges, since it is
supposed to be unprivileged. When the listener accepts a new client connection, a TCP
communication socket will be created, and the listener receives the request and validates
its syntax.

Listener
(privileged)

Listener
(unprivileged)

fork

TCP socket
(Port 80)

local UNIX
socket

Root
(privileged)

Figure 3.6.: Creation of the root process.

This leads us to the point, where Interprocess Communication becomes necessary,
because the listener process needs a way to communicate valid requests to the root
process. We already described earlier several approaches for IPC, such as Pipes, Message
Queues, Shared Memory, Sockets, etc. Which approach was considered to be the best
for our situation, will be clear soon. But consider first, what should happen, after the
root process received a request from the listener. The fork methodology will be used
again, and the root process creates a child process, that is going to handle the request.
The child automatically inherits a copy of the request it has to process, so there is no
extra IPC needed, between root process and its children. However, after the request
was processed, the response must be streamed back to the client. Basically, the request

21

handling process would need to have access to the client communication socket from the
listener. In this way, it could send everything directly back to the client. However, this
socket was created by the listener process, after the root process was forked. Therefore,
the root process did not inherit it, and so, neither the root process nor the request
handling process have access to it. Furthermore, it is not possible to communicate
sockets, i.e., file descriptors, between different processes. So, the only solution, to get
the HTTP response back to the client, is to communicate it to the listener process via
IPC. The listener has access to the clients communication socket, and can therefore
forward the response to the client.

Summarizing, we are left up with two problems:

1. How to communicate the request data from the listener to the root process.

2. How to communicate the response data from the request handler to the listener.

We found a solution, that solves both problems using the same IPC method, namely
sockets. On start-up, the root process creates a local Unix socket, and listens for incom-
ing connections. This socket is not reachable from the Internet, but the listener process
is able to connect to it.

After an incoming request on the server port and a successful validation by the listener
process, this establishes a connection to the root process via the local Unix socket. The
root process then creates a separate communication socket for the connection to the
listener.

Now, there are two possibilities how to send the request data to the handling process:
first, the idea was, that the root process receives the request data from the listener and
then forks a new process, which automatically inherits the data, and handles the request.
However, it would also be possible to let the request handler directly receive the request
from the listener, to reduce the work load of the root process. This is possible, due to
the fact, that the request handling process also inherits communication sockets from its
parent. We considered this second solution as more efficient, and also more secure, since
the root process should just perform tasks that need privileges [27].

So, in a nutshell, there is a separate connection for each client, between request han-
dling process and listener, and between listener and client (see Appendix, Figures A.3,
A.4, A.5). This solved our first problem, and one can reason, that it also solves the
second problem, i.e., how to communicate the response data from the request handler to
the listener, and then back to the client. Socket connections are bidirectional, therefore,
the response can be sent using the same socket, where the request was received.

Concluding, the only responsibility of the root process is to accept connections from
the listener, and create child processes, which inherit the connection. The root process
immediately closes the connection to the listener afterwards, so it is not part of any
further communication. It does also not have any communication channel to its children,
so there is no way, that they could send messages to it and take it over. Data is
transferred directly between listener and request handling process, i.e., two unprivileged
processes.

22

Alternatives

The local Unix socket approach for Interprocess Communication was considered as most
appropriate, because it provides separate communication channels for each client. Ad-
ditionally it supports the Privilege Separation principles and the concept of the Least
Privilege, because the root process’ task is just to wait for incoming connections from
the listener, and to fork request handling processes afterwards.

A shared memory or communication via files, were not considered as appropriate,
because they would increase the complexity of the software. These approaches advantage
communication between several processes, but in our case, we needed just to exchange
data between two. Additionally, they are not ideal for data streams, since it is not easily
detectable when new data is available. Furthermore, problems with concurrent accesses
could occur, which would need synchronization and locking.

Also signals were not an option, since they can only be used as notifier for events, and
not to exchange much data.

We did not want to use any middleware, because in that case, we would not have had
fine grain control about the privileges of the different processes. Therefore RPC, Corba
or similar approaches were not suitable for Interprocess Communication.

At the beginning of the project we made some experiments with pipes, since they are
very similar to sockets, and also support the streaming of data. However, we were not
able to use them, because a pipe allows just communication between a parent and its
child process, and has to be created before the forking of the child process. We needed
for every client a connection between the listener and the request handler, but this was
not possible to achieve, since the request handler is a child of the root process, and not
of the listener.

23

3.2.3. Class diagram

In this subsection we want to describe the architecture of our system, using UML (see
Figure 3.7). However, consider, that this class diagram describes the logical structure
of the system. Actually, there are three types of processes involved, and class instances
are distributed among these processes. Interprocess Communication is used to exchange
objects between processes.

Daemon

SecureWebServer
Listener Process

PrivilegedProcess
Root Process

UnprivilegedProcess
Request Handling Process

SWSConfiguration

Response Request

HTTPRequest

OutputFilterProcessor

CGIExecutor

RequestResponseWrapper

 webserver
1

 rootProcess
1

1

*

1

 config
1

1
 requests

*
 request
1

1

 response
1

1

 request
1

1

1

1

1

1

1

1

Figure 3.7.: UML Class Diagram. A more detailed version, containing the most impor-
tant attributes and operations, can be found in the Appendix, Figures A.1
and A.2

Daemon

This class provides the base functionality of a daemon, so that the software can run as a
system service, i.e., as a background process, detached from any terminal. The daemon
can be controlled using the commands start, stop and restart.

24

SWSConfiguration

This class implements a configuration file parser. It is able to parse the main and all
Virtualhost configuration files. This makes all the settings easily accessible to other
classes. The parser is also responsible for validating the configuration files, and alerting
the user if a directive contains syntax or semantic errors.

SecureWebServer

The SecureWebServer class is a daemon, and the main class for creating an instance of
the web-server. On start-up it initiates the configuration file parsing process, and then
takes over the role of the listener process. It maintains all the connections to the clients,
and has for each client also a connection to the corresponding request handling process.

The class is responsible for the receiving, the parsing and the validation of requests. It
communicates valid requests to request handling processes and responds to invalid ones
with a Bad Request (400) error. It forwards response data, that it gets from a request
handler, to the corresponding client. Note, that in some cases, the response is a local
redirect response [18]. In this case it initiates the reprocessing of the request, using a
different URI.

PrivilegedProcess

This class represents the root process of the architecture. It is responsible for accepting
requests from the listener process, and creating unprivileged child processes, to which it
delegates the handling of request.

UnprivilegedProcess

An UnprivilegedProcess instance is responsible for the request handling. It is created
by the root process and is therefore initially privileged. It instantiates a HTTPRequest
object, which receives the request from the listener. After that, it is able to determine
the privileges of the requested resource, and gives up its privileges. Then it processes
the request, sends back the response, and terminates.

HTTPRequest

This class represents a HTTP request. It provides operations for receiving, parsing and
handling requests, and also for sending back responses. It can therefore be used by the
listener and the request handling process. However, an instance of this class can not
be communicated between processes, because it contains file descriptor attributes. We
explained in earlier sections, that it is not possible to communicate file descriptors from
one process to another. This problem is solved via the RequestResponseWrapper class:
a HTTPRequest has two important member variables, which are Request and Response
objects. They contain all the data of a request or a response, such as request method,
URI, headers, body, etc. Both can be wrapped together (RequestResponseWrapper)
and communicated between processes.

25

CGIExecutor

The CGIExecutor is responsible for executing CGI scripts. It aborts running CGI scripts
that take too long, i.e., exceed the CGI time-out limit.

OutputFilterProcessor

This class applies Output Filters to the response’s body data by pipe-lining. Similar to
the CGIExecutor, it aborts running filter scripts, that exceed a time-out limit.

Request

This class contains all the attributes of a request, such as request method, URI, protocol,
headers, body, file path of the requested resource, etc. For more details, see Appendix,
Figure A.2.

Response

This class contains all the attributes of a response, such as status code, status message,
protocol, headers, body, etc. For more details, see Appendix, Figure A.2.

RequestResponseWrapper

This class wraps together Request and Response objects, so that they can be communi-
cated in one step between processes, and don’t have to be sent separately.

26

4. Implementation

4.1. Software and libraries used

The Python programming language was selected to implement this project. The main
reason for choosing Python (version 2.7.1+) was, that it is an object oriented language,
and provides a large set of libraries and system interfaces [19], which are needed for
developing server software. Python is portable and runs on many operating systems.
This project was build and tested on Ubuntu, a Linux derivation based on Debian.

A GitHub repository was set up at github.com/speer/sws, so that the code is under
version control and stored, i.e., backed, at a central place. Development and unit testing
were performed in the Unix bash, using the VIM editor.

For implementing the web-server software, the following Python libraries have been
used. They are all included in the standard distribution: subprocess, multiprocessing,
threading, socket, select, cPickle, urllib, logging, signal, pwd, grp, sys, atexit, stat, os,
time, re [19]. For performing unit testing with PyUnit [21], the unittest and httplib
libraries were used.

In addition to all these standard libraries, two third party Python scripts have been
used:

• magic.py1: Provides mime type detection of a file by analysing its content. This
open source script is a wrapper around the libmagic file identification library, and
is distributed under the PSF license [20].

• daemon.py2: Provides daemon functionality, so that the web-server can run as a
background process. It is also open source and for public domain.

4.2. Asynchronous requests

It is very easy to create a synchronous web-server in Python. This handles requests
sequentially, which means, that only one request can be processed at a time, and only
one privileged process is involved. Python provides predefined libraries and classes,
such as the BaseHTTPRequestHandler, which allow to implement such a basic web-
server with just a few lines of code. Initially we used these libraries for our project,
but soon we realised, that it is not the proper way to proceed. Consider for example a
situation, where a user, with a slow internet connection, downloads a large file from a
synchronous web-server. Other clients could not connect to the server for a long time,

1https://github.com/ahupp/python-magic
2http://www.jejik.com/articles/2007/02/a simple unix linux daemon in python

27

because this is still busy sending back the large file. Such approach would result in a
very bad performance, but beside that, also the Privilege Separation principles could
not be applied, since there is just one web-server process.

We considered it therefore very important, that our web-server is able to process
requests asynchronously. This means, that multiple requests can be handled at the
same time. We described already in section 2.3, that in Apache, asynchronous requests
are supported by several different multiprocessing modules, such as the Prefork module.
By assigning each request immediately to a different process, Apache’s listener process
stays idle for accepting new connections.

Unfortunately, our web-server design makes asynchronous request handling more com-
plex. Like in Apache’s Prefork architecture, there is a separate request handling process
for every request, so requests can be processed in parallel. However, the problem of
our architecture is, that clients do not communicate directly with the request handling
process, but with the listener, which mediates between request handler and client. The
reason for this has already been explained in section 3.2.2, and is mainly because file de-
scriptors can’t be sent from one process to another. This means, that the listener must
be able to handle all the connections to the clients, and for each client a connection
to the corresponding request handling process. Additionally, it must be able to allow
asynchronous communication on all connections.

If there would be just one client at a time, i.e., if the communication would be syn-
chronous, this situation would not be a problem. The listener, basically running in an
endless loop, could process requests in the following manner:

1. Accept connection from Browser 1

2. Receive request from Browser 1

3. Establish connection to root process

4. Send Browser 1’s request to request handling process

5. Receive response from request handling process

6. Send response back to Browser 1

7. Close connections to Browser 1 and request handling process

8. Wait for new connection

9. Accept connection from Browser 2

10. etc.

A very important aspect in this case is, that the listener process blocks for some time at
step 2 and at step 5. The receive call on a socket is usually blocking, because the process
waits until some data arrives, and continues just after it received all data. Similar is it
also with the send call in steps 4 and 6. Also sending data is blocking, until all data
could be sent. This behaviour is beneficial for synchronous communication, however does
not support asynchronism, since the listener process, while processing one request, can’t
accept new connections. We came up with three different solutions to this problem. All
have been implemented, but finally we continued working with the solution we considered
as most efficient.

28

Listener: fork

This approach introduces asynchronous communication in the listener process by the
use of the fork system call. For every client connection, the listener process spawns an
unprivileged child process, which inherits automatically the communication socket to
the client, and is therefore able to receive the request data. Then this child establishes a
connection to the root process and sends the request to the handling process. Afterwards
in can wait for the response, and then send it back to the client. At the end the child
process terminates.

Note, that here the blocking receive or send calls do not cause any problems, since
they affect just the child process, and not the listener, which is at any point able to
accept new connections. The listener’s work load was so drastically reduced, i.e., split
up among it’s child processes. Although each child process communicates synchronously,
the architecture as a whole achieves asynchronism, and therefore, the web-server is able
to handle multiple requests concurrently.

Listener
(privileged)

Listener
(unprivileged)

fork

fork

TCP socket
(Port 80)

local UNIX
socket

Root
(privileged)

fork

ListenerChild1
(unprivileged)

RequestHandler1
(unprivileged)

Browser 1

Figure 4.1.: Achieving asynchronous communication in the listener process using fork.

However, in the long run, we were not satisfied with this approach, because the web-
server needed to create two new processes for every request: the child of the listener and
the child of the root process, i.e., the request handler. We already mentioned earlier
that a fork system call increases the response time, by the time the operating system
needs for its execution. Therefore we implemented another solution, which just needs to
fork once - basically the request handling process - and reduces so the delay time of the
response.

29

Listener: select

In order achieve asynchronism, without forking the listener process, we had to solve the
problem of the blocking receive and send calls. Sockets can operate in non-blocking
mode. In this case, if the receive call does not immediately get any data, or the send
call does not immediately send data, the program continues executing and does not
wait [23]. However, setting the sockets to non-blocking means, that after a receive call,
one cannot be sure any more that there is any data available. This further implies, that
one cannot continue execution like with a blocking socket. This changes the structure
of the software completely, since one needs to detect, when a socket is ready to receive
or send data.

The select system call provides a solution to this problem: it monitors multiple file
descriptors, i.e., sockets, and waits until at least one becomes ready for an I/O oper-
ation [22]. The call returns three lists of sockets, which are ready to send, receive or
produced an error. This provides a mechanism to detect, when to can call send or receive
and for which socket.

We changed the implementation of the listener, and monitored every communication
socket using select. There are three types of sockets to distinguish: connections to the
client, connections to the root process, and the server socket (ex. port 80), which is the
entry point for new connections.

So, the endless loop, in the implementation of the listener, is left with just one blocking
call, namely select. This call returns as soon as one or more sockets are ready, and one
can iterate over them and call send or receive respectively. These calls won’t block, so
they return immediately after having completed their job. After having iterated over all
ready sockets, the listener calls select again and waits for the next sockets being ready,
etc.

For every client, the listener mainly executes the following non-blocking steps, as soon
as the corresponding socket is ready for the I/O operation:

1. Server socket: accept a new connections from a client.

2. Client communication socket: receive the request from the client.

3. Request handler communication socket: send the client’s request to the handling
process.

4. Request handler communication socket: receive the handling process’ response.

5. Client communication socket: send the response to the client.

Basically, the listener is now able to serve multiple requests concurrently, without hav-
ing to make use of the fork system call twice. Performance tests made using ApacheBench-
mark [12] showed, that for small files, the select approach reduced the response time by
up to 50 percent. For big files the delay time of the fork call was not a decisive factor,
since they generally need longer for being transported, especially over a network.

30

Listener: epoll

This third approach is based on the same principles as the select approach. However,
instead of the select call, the epoll system call is used for event notification. Note, that
epoll is just available on Linux systems with a kernel version larger than 2.5.44 [22].

In order to explain the difference between the two system calls, we first want to explain
the concept of a file descriptor. File descriptors are needed for accessing files, i.e., for
performing read and write operations. They are valid in the scope of a process, and
on Unix systems represented by integer numbers. So is the file descriptor for standard
input usually represented by the number 0, for standard output by 1 and for standard
error by 2. Sockets are types of file descriptors, and get therefore also unique numbers.
Note, that I/O operations on sockets are called receive and send, instead of read and
write, but basically have the same meaning.

Both, the select and the epoll system calls, monitor multiple file descriptors, until
they are ready for an I/O operation. The difference lies in their implementation and
their time complexity [22]. The complexity is linear in both cases, but epoll ’s is slightly
better:

1. Epoll: O(number of file descriptors)

2. Select: O(highest file descriptor)

Epoll just considers the file descriptors of interest, i.e., those that are monitored [22].
So, if there are 10 concurrent requests, epoll’s time complexity will be O(21). This is
because there are 10 connections between clients and listener, 10 connections between
listener and request handlers, and the server socket that is always being monitored, in
order to accept new connections.

Select ’s complexity depends on all file descriptors, the process obtains, independently
whether they are monitored or not. Select initially considers all file descriptors that are
available, then it flags those that are monitored, and lastly it scans all of them linearly,
in order to determine which flagged ones are ready [22]. Therefore, if a process obtains
many file descriptors that are not monitored, select ’s performance will be worse than
epoll ’s. Our previous example, with 10 concurrent requests, therefore has at least a time
complexity of O(24), because one has to add the descriptors for standard input, output
and error, which are available in any process. Consider, that this number could be even
higher, since there might also be other file descriptors for log files, configuration files,
etc.

However, in a nutshell, it does not make much difference in our case, whether to use
select or epoll, since the listener process does not obtain many additional file descriptors,
what would make select much slower. Also, we could not measure any difference in the
web-server’s response time, between the two approaches. We considered epoll to be the
solution to go on with, since in theory it should be slightly faster.

31

4.3. Request processing

In this section we want to explain step by step the tasks that are executed by our server,
in order to generate a HTTP response message, out of a HTTP request.

4.3.1. Receiving the request

We already stated earlier, that the listener process is responsible for receiving a HTTP
request from the client. This is done by instantiating a HTTPRequest object, and by
calling the receiveRequestFromClient operation. Consider, that the data communicated
between processes is streamed. Therefore, one cannot be sure, that all the data arrives
at the same time, but one might need to call receive several times. This is handled by
the HTTPRequest object, which has mechanisms to detect when it got all the data, and
should start parsing the request.

While parsing the request, Request and Response objects get initialised. These are
part of the HTTPRequest object, and contain the information of the HTTP request
message. The Response object is initialised with status code 200, which means success.
If there is any error in parsing the request, its status code will change, and so, the listener
process knows whether it should forward the request to the handling process, or respond
directly with an error to the client.

If the request is valid, the listener establishes a connection to the root process, which
spawns a request handling process (see section 3.2.2). After the connection to the han-
dling process has been established, the listener packs the Request and Response objects
into a RequestResponseWrapper object, which gets encoded using the cPickle library. In
this way it can be sent to the request handling process.

The request handling process instantiates also a HTTPRequest object, and uses the
receiveRequestFromListener operation, to receive the encoded RequestResponseWrapper
object from the listener. After it was fully received, it gets decoded, and the HTTPRe-
quest ’s member variables get initialised with the content of the wrapper object.

4.3.2. Processing the request

The HTTPRequest object has an operation called process, which is responsible for per-
forming all the request processing, and also sends the response back to the listener. All
major tasks that are executed by this method will be described here:

Initially it checks whether the requested resource is located inside the document root
directory. This directory defines the environment to be published by the server. Con-
sider, that there are several Virtualhosts, and each has its own document root directory.
The determination of the matching Virtualhost did already take place during the parsing
process. It is a very important security aspect, to guarantee that users can’t access files,
which are stored outside the document root directory. In such a situation, the request
handler stops further processing, and sends back a Forbidden error (403).

Next, the request handling process determines some properties of the HTTPRequest
object:

32

1. CGI script: Does the configuration specify a CGI handler for this request URI?

2. Output filter: Does the configuration specify Output Filters for this request?

3. DirectoryIndex: Is the request URI a directory, and are there eventually some
DirectoryIndex files that match?

4. 404 - Not Found: Does the requested resource exist?

5. 403 - Forbidden: Is the user allowed to access the resource?

Depending on these properties, the request handler either delivers a static document,
executes a CGI script, or sends back an error document.

However, before proceeding with this, the request handling process needs to give up
its privileges, in order to comply with the principle of the Least Privilege [27]. Up until
this point, the request handling process was still privileged, because earlier it was not
possible to identify the requested resource on the file system. Now, knowing all the
request’s properties, the request handling process can detect the owner and the group
of the requested file, and change its own user and group id respectively. This is done by
the following Python code:

d e t e c t i o n o f the f i l e ’ s p r o p e r t i e s
s t = os . s t a t (s e l f . r eque s t . f i l e p a t h)

i f f i l e i s owned by root ,
t r y to acc es s i s as d e f a u l t user f o r s e c u r i t y reasons
i f s t . s t u i d == 0 :

change pr oces s ’ p r i v i l e g e s to : d e f a u l t user
os . s e t g i d (s e l f . c o n f i g . c o n f i g u r a t i o n s [’ group ’])
os . s e t u i d (s e l f . c o n f i g . c o n f i g u r a t i o n s [’ user ’])

else :
change pr oces s ’ p r i v i l e g e s to : f i l e owner user
os . s e t g i d (s t . s t g i d)
os . s e t u i d (s t . s t u i d)

Note, that this removal of privileges can only be done once and does only work, because
the request handler initially is a superuser process. After being unprivileged, the process
can’t gain privileges any more. This is the main reason, why the web-server is considered
to be secure.

Static document delivery

First, the content type and the size of the requested file will be determined. These values
are represented by two header fields, that are supposed to be set in the HTTP response,
so that the browser is able to display the document correctly. Then the rest of the header
part of the HTTP response message can be assembled, except the body, which will be
the content of the requested document. Now the streaming functionality of the server
comes into play: data is read from the requested file block wise, and each block of data is
immediately sent to the listener (flushResponseToListener), which immediately forwards

33

it to the client (flushResponseToClient). Note, that the first time this operation is called,
also the previously generated header part will be prepended to the HTTP response. This
streaming approach was more difficult to implement, than delivering the whole HTTP
response in one go, but it increased the efficiency of the web-server. Initially, requested
documents were gathered in memory before being delivered to the client. This approach
led to high memory usage, especially when big files were requested. With streaming,
data will not be accumulated in memory, and out of memory errors can be avoided.

If there would occur any error, while accessing the document, the server will respond
with a Internal Server Error (500). However, this is just possible, if no data has already
been sent to the client. If the HTTP response’s status line and the header fields have
already been streamed out, there is no way for the web-server to notify the client that
an error occurred. In this case, the connection will simply be closed.

CGI script execution

Initially, the script file is verified for being executable, and the CGI variables are pre-
pared. Then an instance of the CGIExecutor class executes the script using the subpro-
cess library, actually the Popen function. It creates a separate process for the script,
which has the same privileges as the request handling process. Additionally, it allows to
pass the CGI variables, as environment variables to the script, and the request’s body
data to the script’s standard input file descriptor. During the CGI execution, any data,
that will be produced on the script’s standard output file descriptor, will be streamed to
the listener, using the flushResponseToListener operation. Anything, produced on the
standard error file descriptor, will be stored in the error log file.

We defined in the requirements, that running CGI scripts should be aborted after a
given time-out. In order to realise this, the request handling process initially creates a
separate thread, which invokes the CGI script using the Popen function (see Appendix,
Figure A.6). This thread also streams the script’s output to the listener. The main
thread is responsible to monitor the execution: in case the time-out is reached, it aborts
the CGI script and also the other thread.

In case of any error during the execution of the CGI script, forced or unforced, the
server will return an Internal Server Error (500).

Error documents

Error documents can be defined in configuration files for different status codes. These
documents can either be static or dynamic, i.e., CGI scripts. If an error needs to be
returned in the HTTP response, the request handling process looks up which error
document to use, and then makes use of the two functionalities, that have been described
above: either delivers a static document or executes a CGI script. If there occurs an
error during this process, it simply returns a predefined error message, instead of the
error document.

Note, that error documents are only provided, if no data has already been streamed
to the client. Otherwise the connections will be just closed.

34

4.3.3. Sending the response

We already explained earlier how the response will be streamed to the listener, which
then forwards it to the client. Data between listener and client will be sent in the
format of a HTTP 1.1 response message. However, between request handling process
and listener, the RequestResponseWrapper class is used.

Now, one might think, why this RequestResponseWrapper is needed. Why don’t sim-
ply send the Request object from listener to request handler at request time, and the
Response object from handler to listener at response time? The reason for this is, that in
some cases, a response can cause another request: this is called a CGI local redirect [18].
In this case, the listener, instead of forwarding the response to the client, establishes
again a connection to the root process, and causes the reprocessing of the request, but
with a different URI. All the data of the old request, has to be available also in the new
request, therefore this wrapper class is needed for communicating Request and Response
objects in both directions.

However, this reprocessing could lead to endless redirections, i.e., if a script redirects
to itself. We created a configuration directive, which specifies the maximum number of
allowed redirections, after the server responds with an Internal Server Error (500).

Output Filters

The application of Output Filters, i.e., scripts that modify the response body, is realised
inside the flushResponseToListener operation. This is used generally for streaming data
to the listener. However, as soon as a request matches an Output Filter, the streaming
functionality is disabled. The reason for this is to guarantee, that any Output Filter
does it’s processing properly. Consider for example a filter, that does text replacements
and should replace the word ”hello”, with ”good morning”. If the server would stream
the data, it could happen that the filter gets the string ”hel” in the first stream, and
”lo” in the second. It can not find a match for ”hello”, and therefore does not behave
in the desired way. So, all filter scripts must get the response body data in one go.
Of course, the disadvantage of this approach is, that if the document is big, it leads to
higher memory usage.

Output Filters are executed one after the other, by the request handling process, using
the OutputFilterProcessor class. Initially the response body data will be provided on
the standard input file descriptor of the first script. Using pipe-lining, the scripts output
will be provided as input to the script next in the filter chain, etc. The output of the
last script will form the final response body of the HTTP message.

Python’s Popen function is used for executing filter scripts. Therefore, they run with
the privileges of the request handling process, which means that they are unprivileged.
Like CGI scripts, they will be aborted by the handling process, if their execution time
exceeds the predefined time-out value.

35

5. Evaluation

5.1. Research hypothesis

The main research hypothesis that motivated our project is that the application of the
Privilege Separation principles [25] and the concept of the Least Privilege [27] make a
web-server more secure. In order to prove this, we compared two different web-servers:
we installed the Apache server and the web-server that has been created in this project.
On both servers we set up the same web-sites, and gave them just the privileges that
they really need for being served by each server. We stated the following hypothesis:

H: Privilege Separation makes a web-server more secure.
We expected, that our web-server is more secure than a standard configuration of
Apache, because it performs Privilege Separation. Therefore, a CGI script of one
website should not be able to affect other websites, running on the same server.
Adversaries should also not be able to take over the server system from the Internet,
by exploiting a bug.

5.2. Evaluation strategy

In order to test the above mentioned hypothesis, we first set up an evaluation environ-
ment: we installed the Apache server and our web-server. On both servers we created
two Virtualhosts, named site1 and site2. The corresponding sites contained exactly the
same files on each server. Apache was set up the following way:

site1: Document root directory: apache/site1 (Owner: www-data, Privileges: 500)
CGI script: site1script.php (Owner: www-data, Privileges: 500)

site2: Document root directory: apache/site2 (Owner: www-data, Privileges: 700)
CGI script: site2script.php (Owner: www-data, Privileges: 500)

Consider, that the Apache user (www-data) needs at least read privileges for the files it
has to serve. This requirement is satisfied, so Apache is able to serve both Virtualhosts.
Additionally all the privileges are kept minimal, except the document root directory of
site2 grants also write privileges to Apache. This is not uncommon, since site2 could
possibly need to create some local files (for example like a picture upload application).
The configuration of our web-server was like this:

site1: Document root directory: sws/site1 (Owner: site1, Privileges: 500)
CGI script: site1script.php (Owner: site1, Privileges: 500)

36

site2: Document root directory: sws/site2 (Owner: site2, Privileges: 700)
CGI script: site2script.php (Owner: site2, Privileges: 500)

Consider that there are individual users for every website, since our web-server does not
need a common user for all Virtualhosts. Like in the Apache configuration, the privileges
are kept minimal, except for site2, where the user has also write privileges.

We assumed that both websites are owned by malicious users, which try to get access
to other websites of the server, using PHP scripts:

site1: Tries to delete all the files from site2. The code can be found in Appendix C.1.

site2: Tries to copy all files from site1 to its own document root directory. This is the
reason, why site2’s document root directory grants write privileges (700) to the
web-server user. The code can be found in Appendix C.2.

The actions of both scripts are very dangerous, because they try to get access to
protected data, or try to delete other website’s content. We considered this as an appro-
priate example to test, which web-server is secure, i.e., whether our web-server performs
Privilege Separation correctly.

We expected that Apache would execute both scripts with no warnings, and therefore
support both adversaries. Our web-server in contrast, should deny the script’s dangerous
actions.

Consider, that this project was build also along a second security aspect: adversaries
should not be able to take over the system from the Internet. The evaluation of this
aspect is not trivial, since it is hardly possible to exploit a bug in a software, such as the
Apache server, and analyse its behaviour. However, we know, that Apache’s architecture
has a privileged listener process, which means, that clients establish connections to a
superuser process. In our architecture the listener process, which represents the interface
to the World Wide Web, is unprivileged. Therefore, in case this process is taken over
by an attacker, for example using techniques such as code injection, it cannot harm the
system with superuser privileges [26]. Under Unix there exist several tools to test the
privileges of a process, such as top, ps and netstat.

Beyond testing the listener’s privileges, we also wanted to analyse how it behaves
in case of a takeover. Since our system does not have known bugs, we temporarily
introduced two different errors, and exploited them separately for evaluation purposes:

bug1: Using this bug we wanted to break and interrupt the request parsing. This is
generally a critical stage, since one can’t predict any type of input that will be
provided. Badly formatted messages could possibly cause unexpected behaviour,
although the HTTP parser is designed to be very tolerant, and also performs
syntax checking. In case a message does not meet the HTTP specification, it
responds generally with a Bad Request (400) error to the client.
However, this bug forces the parser, which is executed by the listener process, to
raise an exception if it gets a HTTP header field, named bug1. Theoretically, the
exception should abort the parsing process, and the listener should not forward

37

the invalid request to the root process, for security reasons. Even though an
exception occurred, the server is supposed to stay stable.

bug2: This bug tries to verify, whether the listener process is able to harm the system.
It tests the consequences of code, that will be injected into the listener process.
For this we introduced a second HTTP request header field, named bug2, which
forces the listener to execute the command, specified in the header’s value. So,
if one would set a header such as bug2: rm -rf /, the server will try to erase the
whole file system. Since the listener is assumed to run as an unprivileged process,
a command, specified in this header, should not harm the system.

We also performed unit testing using PyUnit, in order to reduce the number of bugs
in our web-server. The less known bugs there are in software, the more secure it can be
considered.

5.2.1. Additional aspects

Performance

We also wanted to compare the performance of Apache and our web-server. Therefore
we performed speed tests using the ApacheBenchmark tool [12]. It allows to fire multiple
concurrent or sequential requests to a given URL, and measures the time the server needs
for responding. In order to avoid network delays, the tests have been conducted locally.

In this case Apache was our clear favourite, mainly because of its architecture. Apache’s
request handling processes communicate directly with the clients and no data has to be
passed through the listener process. Additionally, Apache’s Prefork module spawns pro-
cesses in advance, so there is no delay at request time because of process creation [15].
Another reason is, that Apache is programmed in C, and not in an interpreted language
such as Python.

We set up three different types of resources, on both, our web-server and Apache:
a small static HTML website, a medium size JPG picture and a PHP script. Using
ApacheBenchmark we fired for every resource 100 requests to the servers, and measured
some statistics. Out of those 100 requests, always 10 have been sent concurrently.

Operability

Lastly, we also wanted to evaluate the software according to its functionalities. It should
be able to deliver any type of static and dynamic document, i.e., images, HTML files,
binaries, PHP scripts, bash scripts, perl scripts, etc. Additionally it should work for
small documents as well as for large ones. In order to perform these tests, several
document types and file sizes have been tested on today’s major browsers, and also on
other HTTP clients.

In order to test the functioning of complex dynamic websites, we set up CMS systems
such as Drupal and MediaWiki. For evaluating the Output Filter functionality we cre-
ated several example scripts, like a text replacement filter, a gzip compression filter, and
a filter that automatically includes a header and a footer part in any page of a website.

38

5.3. Evaluation results

We executed both scripts, i.e., site1 and site2, on both, Apache and our web-server, and
the results were as we expected. Our web-server denied the access to web-sites owned
by other users, and therefore performed Privilege Separation correctly:

PHP Warning : opendir (/home/ s t e f a n /sws/ docs /apache/ s i t e 1 /) :
f a i l e d to open d i r : Permiss ion denied in /home/ s t e f a n /sws/ docs /
sws/ s i t e 2 / s i t e 2 s c r i p t . php on l i n e 3

PHP Warning : opendir (/home/ s t e f a n /sws/ docs /apache/ s i t e 2 /) :
f a i l e d to open d i r : Permiss ion denied in /home/ s t e f a n /sws/ docs /
sws/ s i t e 1 / s i t e 1 s c r i p t . php on l i n e 5

Apache executed both scripts successfully: script2 was able to copy all files from site1
to its local directory, and script1 deleted all files from site2. This proves, that Apache
does not separate the privileges of different websites.

In order to test the privileges of the listener processes of both servers, we used first
the netstat tool to detect their process ids:

n e t s t a t −antp
tcp 0 0 0 . 0 . 0 . 0 : 8 0 0 . 0 . 0 . 0 : ∗ LISTEN 28739/ python
tcp 0 0 0 . 0 . 0 . 0 : 8 0 8 0 0 . 0 . 0 . 0 : ∗ LISTEN 27797/ apache2

In our environment, Apache’s listener process has therefore process id 27797 and our
server 28739. Then we used the ps Unix tool, to detect the users, under which these
processes are running.

ps aux | grep sws
s t e f a n 28739 / usr / bin /python −B . / sws r e s t a r t
root 28740 / usr / bin /python −B . / sws r e s t a r t
s i t e 3 28742 / usr / bin /python −B . / sws r e s t a r t

ps aux | grep apache
root 27797 / usr / sb in /apache2 −k s t a r t
www−data 28195 / usr / sb in /apache2 −k s t a r t
www−data 28196 / usr / sb in /apache2 −k s t a r t

This shows, that Apache’s listener process, with id 27797 is running as root user, and is
therefore privileged. Our web-server’s listener with process id 28739 runs as an unpriv-
ileged user, called stefan. This proves, that our web-server can be considered as secure,
since no privileged listener process is exposed directly to the Internet.

The root process with id 28740 is the privileged process, which stays in the background
of our web-server. The unprivileged site3 process, is a request handling process of our
web-server, which is currently processing a request. Several www-data processes, that
are shown by ps, are pre-forked request handling processes of Apache.

39

As already mentioned, we introduced temporarily two different bugs in the listener
process of our server, in order test its behaviour in case it would be taken over by an
attacker.

i f key == ’ bug1 ’ :
raise Exception

i f key == ’ bug2 ’ :
subproces s . Popen (value . s p l i t ())

Initially we tested bug1 by establishing a TCP connection to our server, via telnet, and
by issuing the following request:

GET / HTTP/1 .1
host : l o c a l h o s t
bug1 : 1

The request has a valid HTTP syntax, however, because of the bug in the request
parser, the listener process raised an exception. Note, that the exception was not caught
explicitly by the server, in order to obtain a realistic behaviour:

• The server closed the connection to the client immediately, without giving any
response message, even not a Bad Request (400) error.

• The exception did not have any impact on the server’s stability, i.e., it was still
responding afterwards, and could handle other requests.

• In the error log file, the following message appeared: Communication error at file
descriptor 22.

• We monitored the system’s processes via top and ps during this experiment, and
detected, that no request handling process was created, i.e., the listener process
did not forward the request to the root process.

Therefore we can state, that even though an exception occurred while parsing a request,
the server remained stable, and did not threat the system’s security.

In order to exploit bug2 we first created a file, named testfile, in the root user’s home
directory. Access was just granted to a privileged process: Owner: root, Privileges: 700.
Then we issued the following request via telnet:

GET / HTTP/1 .1
host : l o c a l h o s t
bug2 : rm −r f / root / t e s t f i l e

Because of the listener process’ vulnerability to code injection, this request caused the
execution of the rm command, specified in the bug2 header. However, we discovered,
that the stated file had not been deleted. This means, that the listener process was not
able to access it, i.e., has no privileged access to the system. Note, that we also tried a
counterexample, to prove the correct functionality of the code injection bug: changing
the privileges to 777, caused the removal of the file.

40

Because of the web-server’s behaviour in these two situations, we can state, that a bug
in the listener process, which might lead to a takeover, does not give an adversary the
possibility to gain superuser privileges on the system. This is mainly because, invalid
requests do not get forwarded to the root process, and the listener process is unprivileged.
Also the HTTP response does not provide a way for an attacker to obtain superuser
privileges, since it is sent directly from request handling process to the listener, without
involving the root process. This proves, that the root process is completely isolated, and
cannot be overtaken because of badly formatted messages.

We mentioned earlier, that we also performed unit testing, for avoiding bugs in our
software. The final run of the test suite showed, that no errors have been detected (see
Appendix, Figure A.7).

Conclusions

Because our web-server has no known bugs, performs Privilege Separation correctly, has
an unprivileged listener process and an isolated root process, it can be considered as
secure. We can therefore accept our main hypothesis, stated in section 5.1: Privilege
Separation makes a web-server more secure, i.e., our web-server is more secure than a
standard configuration of the Apache server.

However we want to mention a very important aspect: one should not reason based
on these results, that Apache is a insecure web-server. We considered security just with
respect to Privilege Separation, since this is the focus point of our research. There are
several modules for Apache, which make it more secure, such as suExec for example [10].
Using this module, also Apache would deny the execution of the malicious scripts of site1
and site2. Additionally, a privileged listener process is not a severe problem for Apache,
since it is a very stable web-server, tested by a community of many people. However, if
one would find a bug in Apache’s listener and could exploit it, he could theoretically gain
superuser privileges on the system. Regarding this point, our web-server is definitively
more secure.

5.3.1. Additional aspects

Performance

The benchmark confirms our assumptions, that Apache’s performance is much better.
For every benchmark test we measured four different statistics. All of them represent
the average values out of 100 requests:

• Data transferred [byte]: is the sum of the sizes of the HTTP request and the
response.

• Request per second [absolute value]: represents the number of requests, the
server can theoretically complete in a second. Note, that this value is calculated
based on the time per request.

• Time per request [millisecond]: is the time, the server needs to complete a
single request.

41

• Transfer rate [kilobyte / second]: specifies the average transfer rate of sending
and receiving data. Note, that the tests were performed locally.

Server Measure HTML JPG CGI:php

SWS

Data transferred [byte] 363 59349 49588
Requests per second 237 134 36
Time per request [ms] 4.2 7.4 27.7
Transfer rate [kb/s] 84 7791 1745

Apache

Data transferred [byte] 488 59496 51663
Requests per second 3274 2752 1082
Time per request [ms] 0.3 0.4 0.9
Transfer rate [kb/s] 1560 159944 54836

Table 5.1.: Results of the benchmark test: average values of 10 times 10 concurrent
requests.

The average time per request, is the most interesting value, since the others mostly
depend on it. According to this results, Apache is generally speaking more than 10
times faster than our server. We came up with several different reasons for this huge
performance difference:

• Apache is written in C, which is compiled to machine code and therefore executes
faster than Python, which interprets byte code.

• Apache performs pre-forking, so it can serve requests without performing any fork
operation. We already mentioned earlier, that forking processes causes delays,
because it needs a system call. Our server needs to create at least one process for
every single request.

• Our server has to communicate all the request and response data through the
listener process, while Apache’s request handling process can communicate directly
with the client.

• Apache comes with native modules, that are responsible for executing PHP scripts.
In our architecture a PHP script is treated like a CGI script, which needs a further
process for being executed, i.e., a child of the request handling process. Therefore,
two fork calls are needed for a CGI request, while Apache does not need to spawn
any process at request time.

• During development we detected, that our approach for mime-type detection is
quite slow: we use libmagic, which analyses the content of a file. Apache maps file-
name extensions to mime-types, which just needs a list of mappings. Therefore,
Apache can determine the mime-type of a file much faster.

Considering the benchmark results, we think that the performance of our web-server is
not excellent but acceptable. Furthermore, the benchmarking tests have been performed
locally, and networking delays have not been considered. Concurrent local requests stress
our server much more, because of the epoll implementation: all the request and response

42

data is passed through a single listener process. Accessing the server just locally means,
that sockets are sooner ready to send or receive data. This increases the current work
load of the listener, because it decreases its idle time, and slows down so the web-server.

Note, that already while developing the system we tried out another Python inter-
preter, called PyPy, which basically is a Just-In-Time compiler [4]. This achieves a
speed up, after a process runs for a while, because it creates executable machine code,
instead of interpretable byte code. Initially we expected it can beat the standard Python,
but it was double as slow. This was most likely due to the fact, that we often create
new processes, and they have a very short life time. Therefore a process cannot gain
the advantages of the speed up, that would be achieved after a while, because of the
Just-In-Time compilation.

Operability

The following matrix shows, that all tested document types were handled correctly, by
all tested HTTP clients. Also the Drupal and MediaWiki CMS systems, based on PHP,
and all the three types of tested Output Filters, were working properly. Even functions
such as PHP session management or Drupal’s picture upload, did not point out any
problems. Therefore we can say, that our web-server supports the most important parts
of the current HTTP and CGI standards, and can therefore be used in practice.

Firefox Chrome MS IE Safari Opera Lynx Wget Telnet

HTML ok ok ok ok ok ok ok ok
JPG ok ok ok ok ok ok ok ok
Binary ok ok ok ok ok ok ok ok
CGI:php ok ok ok ok ok ok ok ok
CGI:bash ok ok ok ok ok ok ok ok
CGI:perl ok ok ok ok ok ok ok ok
Error:404 ok ok ok ok ok ok ok ok
MediaWiki ok ok ok ok ok ok ok ok
Drupal ok ok ok ok ok ok ok ok
Replace Filter ok ok ok ok ok ok ok ok
Gzip Filter ok ok ok ok ok ok ok ok
Include Filter ok ok ok ok ok ok ok ok

Table 5.2.: Tested document types and HTTP clients, i.e., browsers.

43

6. Conclusions

6.1. Summary

In this project we wanted to test if Privilege Separation can make a web-server more
secure. We created a fully functional web-server, based on the Privilege Separation
principles [25] and the concept of the Least Privilege [27]. Therefore, a website should
not have access to another website, that is hosted on the same web-server. Furthermore,
a privileged process should not be directly exposed to the Internet.

Our web-server is able to deliver static and dynamic documents, basically CGI scripts.
In addition it provides a set of other functionality, which is often needed by today’s
websites, such as Output Filters. Everything that was initially planned, was also realised.

In order to evaluate the software we created, we compared it with nowadays most used
web-server: Apache. We mainly focused on the security aspects, i.e., whether the server
performs Privilege Separation correctly. In addition we also tested its performance, in
order to find out, whether it can be used in practice. We set up the same websites
and scripts on both web-servers and discovered, that our server performs Privilege Sep-
aration correctly, and behaves in a more secure way than Apache. However, Apache’s
performance, i.e., response time, was much better.

The biggest challenge faced during this project was the realisation of the asynchronous
Interprocess Communication. The support for several types of processes, privileged or
unprivileged, was implemented soon, but they must also communicate among each other
in an efficient way. We came up with several approaches and finally picked the one we
considered as optimal, where all communication is done via sockets, and the listener
process uses the epoll system call, for being able to handle multiple requests concurrently.

In conclusion, our web-server is lightweight and secure, with practical functionality
and decent performance. It can be used in environments, where security is necessarily
important. An area of application could be for example in data centres, where hosting
providers want to provide cheap web-space to clients, and don’t want the web-server to
consume many system resources. Security is a very important aspect, since customers
don’t know each other, and therefore file accesses across websites should be strictly
forbidden.

Currently, our system does work just on Unix systems, but since Python runs on many
different operating systems, it can be ported with minor changes also to other platforms.

44

6.2. Future work

In the future, this project could be extended and optimised in various directions, such
as performance, functionality or security.

We considered just the most important parts of the extensive HTTP 1.1 specification.
Concepts such as persistent connections, transfer encodings, or user authentication have
not been implemented at all. Persistent connections could possibly increase the perfor-
mance of the web-server, because they allow a browser to send more than one request
through a single connection. This could be an interesting field to focus on, since it needs
some thinking, how the Privilege Separation principles can be applied in that case.

The weakest point of our implementation is the web-server’s performance. We tried
to make the request processing as fast as possible, however, because of the short project
period, we mainly focussed on Privilege Separation. It would be very interesting to
investigate, how to improve the performance. Beside keep-alive connections, also a
pre-fork mechanism could bring some optimisation. However, it is not elementary to
perform pre-forking, because the processes’ privileges are not known in advance. These
depend on the requested file, which is just known at request time. A possible solution
to this could be, setting the privileges at request time, but forking privileged processes
in advance. The counterpart of this approach is, that Interprocess Communication gets
more complicated.

Performance optimisations could also be achieved by developing modules, which na-
tively support dynamic scripting languages like PHP, or which support fastCGI. Also a
more efficient mime-type detection algorithm could increase the server’s performance.

Other future work could extend the web-server’s functionality: we implemented just
a limited subset of Apache’s range of functions. Very interesting for nowadays websites
could be for example a URL rewriter, or the support for htaccess files.

There is also an aspect regarding security, which could be optimised. CGI scripts of
our server are executed by their owner-user. However, if this user has access to system
folders, such as /etc or /bin, also the script has access to these folders. This could lead to
security problems, since the script itself is not locked into the document root directory,
and therefore has unprivileged access to the whole system. So, it is for example possible,
that the script can read configuration files in the /etc folder, which have set the privileges
to 755, and possibly contain passwords or other confidential information. An approach
to solve this problem could possibly be, restricting the script’s execution environment
to the document root directory.

45

References

[1] Bradford L. Barrett. Webalizer, 2012. URL http://http://www.webalizer.org/.
(accessed August 15, 2012).

[2] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for
privilege separation. Proceedings of the 13th USENIX Security Symposium, August
2004.

[3] CERN. How the web began, 2008. URL http://public.web.cern.ch/public/

en/about/WebStory-en.html. (accessed August 2, 2012).

[4] PyPy Community. Pypy, 2012. URL http://pypy.org/. (accessed August 21,
2012).

[5] Internet Engineering Task Force. Requirements for internet hosts - communication
layers, October 1989. URL http://tools.ietf.org/html/rfc1122. (accessed
August 10, 2012).

[6] Apache Software Foundation. Request processing in apache, 2008. URL http:

//www.apachetutor.org/dev/request. (accessed August 11, 2012).

[7] Apache Software Foundation. Httpd privilege separation, September 2009.
URL http://wiki.apache.org/httpd/PrivilegeSeparation. (accessed April 16,
2012).

[8] Apache Software Foundation. Apache 2.0 core features - directory directive, 2011.
URL http://httpd.apache.org/docs/2.0/en/mod/core.html#directory. (ac-
cessed April 19, 2012).

[9] Apache Software Foundation. Apache 2.0 filter documentation, 2011. URL http:

//httpd.apache.org/docs/2.0/en/filter.html. (accessed April 19, 2012).

[10] Apache Software Foundation. Apache 2.0 suexec support, 2011. URL http://

httpd.apache.org/docs/2.0/en/suexec.html. (accessed April 16, 2012).

[11] Apache Software Foundation. Apache 2.0 virtual host documentation, 2011. URL
http://httpd.apache.org/docs/2.0/en/vhosts. (accessed April 17, 2012).

[12] Apache Software Foundation. ab - apache http server benchmarking tool, 2012.
URL http://httpd.apache.org/docs/2.2/programs/ab.html. (accessed August
21, 2012).

46

http://http://www.webalizer.org/
http://public.web.cern.ch/public/en/about/WebStory-en.html
http://public.web.cern.ch/public/en/about/WebStory-en.html
http://pypy.org/
http://tools.ietf.org/html/rfc1122
http://www.apachetutor.org/dev/request
http://www.apachetutor.org/dev/request
http://wiki.apache.org/httpd/PrivilegeSeparation
http://httpd.apache.org/docs/2.0/en/mod/core.html#directory
http://httpd.apache.org/docs/2.0/en/filter.html
http://httpd.apache.org/docs/2.0/en/filter.html
http://httpd.apache.org/docs/2.0/en/suexec.html
http://httpd.apache.org/docs/2.0/en/suexec.html
http://httpd.apache.org/docs/2.0/en/vhosts
http://httpd.apache.org/docs/2.2/programs/ab.html

[13] Apache Software Foundation. Apache log files, 2012. URL http://httpd.apache.

org/docs/2.2/logs.html. (accessed August 15, 2012).

[14] Apache Software Foundation. Multi-processing modules (mpms), 2012. URL http:

//httpd.apache.org/docs/2.2/en/mpm.html. (accessed August 10, 2012).

[15] Apache Software Foundation. Apache mpm prefork, 2012. URL http://httpd.

apache.org/docs/2.2/en/mod/prefork.html. (accessed August 10, 2012).

[16] Apache Software Foundation. Apache http server, April 2012. URL http://

projects.apache.org/projects/http_server.html. (accessed August 2, 2012).

[17] Apache Software Foundation, D. Robinson, and K. Coar. The common gateway in-
terface (cgi) version 1.1, October 2004. URL http://www.ietf.org/rfc/rfc3875.
(accessed August 10, 2012).

[18] Apache Software Foundation, D. Robinson, and K. Coar. The common gateway
interface (cgi) version 1.1 - local redirect response, October 2004. URL http:

//tools.ietf.org/html/rfc3875#section-6.2.2. (accessed August 20, 2012).

[19] Python Software Foundation. Python v2.7.3 documentation - general python faq,
2012. URL http://docs.python.org/faq/general. (accessed August 7, 2012).

[20] Python Software Foundation. Python v2.7.3 documentation - history and license,
2012. URL http://docs.python.org/license.html. (accessed August 20, 2012).

[21] Python Software Foundation. Python v2.7.3 documentation - unit testing frame-
work, 2012. URL http://docs.python.org/library/unittest.html. (accessed
August 7, 2012).

[22] Python Software Foundation. Python v2.7.3 documentation - select, 2012. URL
http://docs.python.org/library/select.html. (accessed August 21, 2012).

[23] Python Software Foundation. Python v2.7.3 documentation - socket, 2012. URL
http://docs.python.org/library/socket.html. (accessed August 21, 2012).

[24] The IEEE and The Open Group. Fork - create a new process, 2008. URL http://

pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html. (accessed
August 12, 2012).

[25] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
12th USENIX Security Symposium, August 2003. URL http://niels.xtdnet.nl/

papers/privsep.pdf.

[26] Simon Rettberg. Sicherheitsaspekte in Kommunikationsnetzen - Code In-
jection. Uni Freiburg - Lehrstuhl fuer Kommunikationssysteme, Mai 2010.
URL http://www.data.ks.uni-freiburg.de/download/praxisseminarSS10/

code-injection/Simon_Rettberg_Code-Injection.pdf.

47

http://httpd.apache.org/docs/2.2/logs.html
http://httpd.apache.org/docs/2.2/logs.html
http://httpd.apache.org/docs/2.2/en/mpm.html
http://httpd.apache.org/docs/2.2/en/mpm.html
http://httpd.apache.org/docs/2.2/en/mod/prefork.html
http://httpd.apache.org/docs/2.2/en/mod/prefork.html
http://projects.apache.org/projects/http_server.html
http://projects.apache.org/projects/http_server.html
http://www.ietf.org/rfc/rfc3875
http://tools.ietf.org/html/rfc3875#section-6.2.2
http://tools.ietf.org/html/rfc3875#section-6.2.2
http://docs.python.org/faq/general
http://docs.python.org/license.html
http://docs.python.org/library/unittest.html
http://docs.python.org/library/select.html
http://docs.python.org/library/socket.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://niels.xtdnet.nl/papers/privsep.pdf
http://niels.xtdnet.nl/papers/privsep.pdf
http://www.data.ks.uni-freiburg.de/download/praxisseminarSS10/ code-injection/Simon_Rettberg_Code-Injection.pdf
http://www.data.ks.uni-freiburg.de/download/praxisseminarSS10/ code-injection/Simon_Rettberg_Code-Injection.pdf

[27] Jerome H. Saltzer. Protection and the control of information in multics. Commu-
nications of the ACM, 17(7):388–402, July 1974.

[28] W. Richard Stevens. UNIX Network Programming: Interprocess communications.
Prentice Hall PTR, 2nd edition, 1998.

[29] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007.

[30] W3 Techs. Usage of web servers for websites, August 2012. URL http://w3techs.

com/technologies/overview/web_server/all. (accessed August 2, 2012).

[31] W3C. Rfc 2616: Hypertext transfer protocol - http/1.1, June 1999. URL http:

//www.w3.org/Protocols/rfc2616/rfc2616.html. (accessed April 21, 2012).

[32] W3C. Rfc 2616: Hypertext transfer protocol - 1.1. - host header, June 1999. URL
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.23. (ac-
cessed April 17, 2012).

[33] W3C. Rfc 2616: Hypertext transfer protocol - 1.1. - http message, June 1999.
URL http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4. (ac-
cessed April 21, 2012).

[34] W3C. Rfc 2616: Hypertext transfer protocol - 1.1. - status codes, June 1999. URL
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1. (accessed
April 21, 2012).

[35] W3C. Rfc 2616: Hypertext transfer protocol - 1.1. - request uri, June 1999. URL
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1.2. (ac-
cessed August 14, 2012).

[36] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible
security architectures for java. 16h Symposium on Operating System Principles,
October 1997. URL http://sip.cs.princeton.edu/pub/sosp97.html.

[37] Sebastian Wolfgarten. Apache Webserver 2. Addison-Wesley, 2nd edition, 2004.

48

http://w3techs.com/technologies/overview/web_server/all
http://w3techs.com/technologies/overview/web_server/all
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.23
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1.2
http://sip.cs.princeton.edu/pub/sosp97.html

A. Appendix: Figures

Daemon
 configFile: String
 pidFile: String

 <<Constructor>> init(configFile:String,
 pidFile:String)
 daemonize()
 start()
 stop()
 restart()
 initialize()
 run()

SecureWebServer
Listener Process

 listener: Socket

 initialize(configFile:String)
 run()
 shutdown()

SWSConfiguration
 configFile: String
 configFolder: String
 configurations: Dictionary
 virtualHosts: Dictionary
 defaultVirtualHost: String

 <<Constructor>> init(configFolder:String)
 readConfigFile(configFile:String)
 initVHost()
 initDirectory()
 parseFile()
 initLogger()

1
 config

1

PrivilegedProcess
Root Process

 rootListener: Socket

 <<Constructor>> init(webserver:SecureWebServer)

 webserver
1

 rootProcess
1

UnprivilegedProcesses
Request Handling Process

 <<Constructor>> init(connection:Socket,
 config:SWSConfiguration)

1

*

HTTPRequest

1

 request
1

1

 requests
*

Figure A.1.: UML class diagram, that shows the system’s logical architecture, and con-
tains the most important method signatures. Note, that the HTTPRequest
class is shown in more detail in a separate diagram (see Figure A.2).

49

HTTPRequest
 connection: Socket
 config: SWSConfiguration
 connectionClosed: Boolean
 requestHeader: String
 requestBody: String
 headerReceived: Boolean
 requestNumber: Integer
 tmpData: String

 <<Constructor>> init(connection:Socket,
 config:SWSConfiguration)
 pickle(): String
 unpickle()
 receiveRequestFromListener()
 receiveRequestFromClient()
 parseHeader(): Boolean
 isJailedInto(jail:String,path:String): Boolean
 checkValidity(): Boolean
 generateCGIEnvironment()
 generateResponseHeaderMessage()
 appendResponseMessageBody()
 sendError(errorCode:Integer)
 flushResponseToListener(closeConnection:Boolean)
 flushResponseToClient()
 process()
 processDocument()
 processCGI()
 removePrivileges()

Request
 headers: Dictionary
 cgiEnvironment: Dictionary
 method: String
 uri: String
 filepath: String
 protocol: String
 cgiPathInfo: String
 query: String
 host: String
 body: String
 remoteAddr: String
 remoteFqdn: String
 remotePort: Integer
 serverPort: Integer
 serverAddr: String
 virtualHost: String
 cgiDirectory: String
 cgiExecutor: String
 directoryChain: Dictionary

 getHeader(key:String): String
 setHeader(key:String,value:String)
 getContentLength(): Integer

OutputFilterProcessor
 execute()

CGIExecutor
 execute()

RequestResponseWrapper

Response
 headers: Dictionary
 cgiHeaders: Dictionary
 statusCode: Integer
 statusMessage: String
 contentLength: Integer
 contentType: String
 message: String
 reprocess: Boolean
 connectionClose: Boolean
 flushed: Boolean

 getHeader(key:String): String
 setHeader(key:String,value:String)
 getCGIHeader(key:String): String
 setCGIHeader(key:String,value:String)

 1

1

1

 response
1

1

 request
1

1

 cgiExecutor
1

1
 ofProcessor

1

Figure A.2.: This UML class diagram illustrates the HTTPRequest class and related
classes. Note, that just the most important method signatures have been
included in this diagram.

Listener
(privileged)

Listener
(unprivileged)

Rq1: _ _

fork

fork

TCP socket
(Port 80)

local UNIX
socketRoot

(privileged)

RequestHandler1
(unprivileged)

Browser 1

Browser 2

Figure A.3.: Step 1: a Browser (Browser 2) connects to the listener’s port.

Listener
(privileged)

Listener
(unprivileged)

Rq1: _ _
Rq2: _ _

fork

fork

TCP socket
(Port 80)

local UNIX
socketRoot

(privileged)

RequestHandler1
(unprivileged)

Browser 1

Browser 2

Figure A.4.: Step 2: after Browser 2’s connection has been accepted, the listener estab-
lishes a connection to the local Unix socket of the root process.

51

Listener
(privileged)

Listener
(unprivileged)

Rq1: _ _
Rq2: _ _

fork

fork

fork

TCP socket
(Port 80)

local UNIX
socket

Root
(privileged)

RequestHandler1
(unprivileged)

RequestHandler2
(unprivileged)

Browser 2

Browser 1

Figure A.5.: Step 3: after the root process accepted the connection from the listener, a
new request handler will be created, which is able to communicate directly
with the listener process.

RequestHandler
(unprivileged)

new thread

Popen

CGI Script
(unprivileged)

RequestHandler
(unprivileged)

Executing ThreadMonitor
Thread

Figure A.6.: CGI scripts are managed by a separate thread: the main thread monitors
the executing thread and aborts the CGI script after a timeout.

52

Figure A.7.: Unit tests performed using PyUnit. No errors.

Figure A.8.: Webalizer evaluating log files of our web-server. The generated website is
hosted on it.

53

Figure A.9.: Gantt Chart showing the course of the project.

54

B. Appendix: Configuration Files

B.1. Example of a global server configuration file

#
This i s the main c o n f i g f i l e f o r SWS server , by Ste fan Peer .
#
P r o j e c t webpage : sws . peerweb . i t
Subvers ion Repos i tory : svn . sws . peerweb . i t
Git Repos i tory : g i t h u b . com/ speer /sws
#
London , Summer 2012
#

Port and Host the s e r v e r i s running on
Li s t en 80
#Host 1 2 7 . 0 . 0 . 1

User and Group o f the L i s t e n e r (i d or name)
User s t e f a n
Group s t e f a n

Whether names o f h o s t s shou ld be r e s o l v e d
eg . sws . peerweb . i t (on) or 4 6 . 4 . 1 7 . 1 4 8 (o f f)
Switch Off f o r performance reasons
HostnameLookups Off

D e f a u l t MIME type t h a t the s e r v e r w i l l use f o r documents i f
i t cannot determine the type

DefaultType text / p l a i n

Timeout f o r a b o r t i o n o f CGI s c r i p t s
CGITimeout 30

Limit i n t e r n a l r e c u r s i o n s in CGI s c r i t p s (i f l o c a l r e d i r e c t
i s used)

CGIRecursionLimit 10

55

S i z e o f the queue o f the l i s t e n e r pr oces s
ListenQueueSize 10

s i z e o f the s o c k e t r e c e i v e b u f f e r (h i g h e r i s b e t t e r)
Socke tBu f f e rS i z e 8192

l o c a l UNIX s o c k e t f o r pr oces s communication
CommunicationSocketFile /tmp/sws . peerweb . i t

g l o b a l e r r o r l o g f i l e
ErrorLogFi l e /home/ s t e f a n /sws/ log / e r r o r . l og

g l o b a l a c c e s s l o g f i l e
AccessLogFi le /home/ s t e f a n /sws/ log / a c c e s s . l og

g l o b a l documentroot d i r e c t o r y f o r errordocuments
ErrorDocumentRoot /home/ s t e f a n /sws/ e r r o rd o c s

errordocuments f o r d i f f e r e n t s t a t u s codes , s t o r e d i n t o the
ErrorDocumentRoot f o l d e r

ErrorDocument 403 403 . html
ErrorDocument 404 404 . html
ErrorDocument 500 500 . html

s e t c s s type
AddType . c s s t ex t / c s s

56

B.2. Example of a Virtualhost configuration file

#
This i s a v i r t u a l h o s t c o n f i g f i l e f o r SWS server , by Ste fan

Peer .
#
P r o j e c t webpage : sws . peerweb . i t
Subvers ion Repos i tory : svn . sws . peerweb . i t
Git Repos i tory : g i t h u b . com/ speer /sws
#
London , Summer 2012
#

This f i l e r e p r e s e n t s the d e f a u l t v i r t u a l h o s t , used i f the
hostname i s unknown

Defau l tVi r tua lHost

E−Mail address o f the s e r v e r adminis t ra tor , i . e . the
r e s p o n s i b l e f o r t h i s v i r t u a l h o s t

ServerAdmin stefan@peerweb . i t

Main hostname
ServerName s i t e 1 . sws . peerweb . i t

Hostname A l i a s e s
Se rve rA l i a s www. s i t e 1 . sws . peerweb . i t
#S e r v e r A l i a s s i t e 2 . sws . peerweb . i t

Root d i r e c t o r y , which i s p u b l i s h e d
DocumentRoot /home/ s t e f a n /sws/ docs / s i t e 1

L i s t o f r e s o u r c e s to l o o k f o r when the c l i e n t r e q u e s t s a
d i r e c t o r y

DirectoryIndex index . html index . htm

Custom l o g f i l e s f o r v i r t u a l h o s t
ErrorLogFi l e /home/ s t e f a n /sws/ log / s i t e 1 e r r o r . l og
AccessLogFi le /home/ s t e f a n /sws/ log / s i t e 1 a c c e s s . l og

Custom errordocuments f o r v i r t u a l h o s t
ErrorDocumentRoot /home/ s t e f a n /sws/ e r r o rd o c s / s i t e 1
ErrorDocument 403 403 . html
ErrorDocument 404 404 . html

57

ErrorDocument 500 500 . html

Conf igura t ion d i r e c t i v e s a p p l i e d to a s p e c i f i c d i r e c t o r y
<Direc tory ”/ cg i−bin ”>

L i s t o f r e s o u r c e s to l o o k f o r when the c l i e n t
r e q u e s t s a d i r e c t o r y

DirectoryIndex index . p l home . p l
L i s t o f f i l e e x t e n s i o n s t h a t are handled as CGI−

s c r i p t s
CGIHandler . p l
CGIHandler . sh

</Directory>

<Direc tory ” cg i−bin /php”>
DirectoryIndex index . php
. php f i l e s shou ld be handled as CGI s c r i p t and the

e x e c u t o r i s / usr / b in /php−c g i
CGIHandler . php / usr / bin /php−c g i

</Directory>

d e f i n i t i o n o f two f i l t e r s c r i p t s
ExtF i l t e rDe f i n e t e s t 1 cmd=”/home/ s t e f a n /sws/ f i l t e r s / t e s t . p l ”
ExtF i l t e rDe f i n e t e s t 2 cmd=”/home/ s t e f a n /sws/ f i l t e r s / t e s t 2 . p l ”

<Direc tory ”/ cg i−bin / f i l t e r s ”>
f i l t e r s t e s t 1 and t e s t 2 shou ld be a p p l i e d to a l l

r e s o u r c e s in the cg i−b in / f i l t e r s f o l d e r
SetOutputFi l t e r t e s t 1 ; t e s t 2

</Directory>

58

C. Appendix: CGI Scripts

C.1. Site1: tries to deletes all the files from site2

<?
$somepassword = ’ thepassword ’ ;

$path = ’/home/ s t e f a n /sws/ docs /apache/ s i t e 2 / ’ ;
$d i r = opendir ($path) or d i e (’ cannot open dir ’) ;
while ($ f i l e = readd i r ($d i r))

i f ($ f i l e != ’ . ’ && $ f i l e != ’ . . ’)
un l ink ($path . $ f i l e) ;

echo ’ Deleted s u c c e s s f u l l y ’ ;
c l o s e d i r ($d i r) ;
?>

C.2. Site2: tries to copy all files from site1 to site2

<?
$path = ’/home/ s t e f a n /sws/ docs /apache/ s i t e 1 / ’ ;
$d i r = opendir ($path) or d i e (’ cannot open dir ’) ;
while ($ f i l e = readd i r ($d i r))

i f ($ f i l e != ’ . ’ && $ f i l e != ’ . . ’)
copy ($path . $ f i l e , $ f i l e) ;

echo ’ Copied s u c c e s s f u l l y ’ ;
c l o s e d i r ($d i r) ;
?>

59

D. Appendix: Program Listings

I verify that I am the sole author of the programs contained in this folder, except where
explicitly stated to the contrary.

Stefan Peer
London, 30.08.2012

60

#!/usr/bin/python −B

THIS IS THE SERVER DAEMON’S MAIN CONTROL SCRIPT

import sys, time
import webserver

Path where the server configuration file sws.conf and the sites−enabled folder are stored
CONFIGURATION_PATH = ’ /home/stefan/sws/config’
Path, were the daemon’s pid file will be stored
PID_PATH = ’ /tmp/sws.peerweb.it.pid’

if __name__ == " __main__":
daemon = webserver.SecureWebServer(PID_PATH, CONFIGURATION_PATH)
if len(sys.argv) == 2:

if ’ start’ == sys.argv[1].lower():
daemon.start()

elif ’ stop’ == sys.argv[1].lower():
daemon.stop()

elif ’ restart’ == sys.argv[1].lower():
daemon.restart()

else:
print " Unknown command"
sys.exit(2)

sys.exit(0)
else:

print " usage: %s start|stop|restart" % sys.argv[0]
sys.exit(2)

sws: start, stop, restart script of the server daemon

import select
import socket
import os
from multiprocessing import Process, Pipe
import subprocess
import sys
import cPickle
import re
import signal
import logging
from time import strftime

import httprequest
import config
from daemon import Daemon

This class handles an unprivileged process, that raised out of the fork of the root process
It receives the HttpRequest object from the Listener Process
Afterwards it processes the request
class UnprivilegedProcess:

def __init__(self, connection, rootSocket, config):
forked client process does not need a open root listening socket
rootSocket.close()

initialize new Request object
request = httprequest.HttpRequest(connection,config)

receive Request from listener process
request.receiveRequestFromListener()

process request, send response back to listener and close connection at the end
request.process()

This class represents the privileged root process, that listens on a UNIX socket and accepts new connections f
rom the listener process
it creates a new unprivileged process for each connection
class PrivilegedProcess:

def __init__ (self, webserver):
forked root process does not need a open server/listening socket
webserver.listener.close()

create UNIX socket for communication with client processes
rootListener = socket.socket(socket.AF_UNIX,socket.SOCK_STREAM)
try:

remove eventual old socket
os.remove(webserver.config.configurations[’ communicationsocketfile’])

except OSError:
pass

rootListener.bind(webserver.config.configurations[’ communicationsocketfile’])
the listener process has to have access to the unix socket, therefore grant privileges to listener
os.chown(webserver.config.configurations[’ communicationsocketfile’],webserver.config.configurations[’ user’],web

server.config.configurations[’ group’])
rootListener.listen(webserver.config.configurations[’ listenqueuesize’])

create an event poller in order to be able to react on new connections and on termination events from
the listener

epoll = select.epoll()
epoll.register(rootListener.fileno(), select.EPOLLIN)
epoll.register(webserver.rootPipe.fileno(), select.EPOLLIN)

while 1:
check for filedescriptors
events = epoll.poll(1)
for fileno, event in events:

if fileno == rootListener.fileno():
new connection from listener process
conn, addr = rootListener.accept()
for each connection a new unprivileged process is created
unprivilegedProcess = Process (target=UnprivilegedProcess,args=(conn,rootListener,webserver.

config))
unprivilegedProcess.start()
conn.close()

else:
listener process terminated, terminate also privileged process
if webserver.rootPipe.recv() == ’ terminate’:

try:
os.remove(webserver.config.configurations[’ communicationsocketfile’])

except:
pass

sys.exit(0)

This class creates the main architecture of the server
It basically represents the Listener Process, which handles new incoming connections, manages communication be
tween processes and clients
Makes use of the select system call, i.e. epoll, to efficiently handle many connections simultaneously
class SecureWebServer (Daemon):

initialize the server, i.e. get configuration and try to listen at port
def initialize(self, configuration_path):

parse config files

webserver.py: contains all 3 types of processes

self.config = config.SwsConfiguration(configuration_path)
success, message, code = self.config.parseFile()
if not success:

log error message
self.logError(message)
return message

self.rootProcess = None

create server socket and bind to port
try:

self.listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.listener.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.listener.bind((self.config.configurations[’ host’], self.config.configurations[’ listen’]))
self.listener.listen(self.config.configurations[’ listenqueuesize’])
disable blocking mode of the listener socket
self.listener.setblocking(0)

except:
msg = ’ Could not bind server to port ’ + str(self.config.configurations[’ listen’])
self.logError(msg)
return msg

return None

logs an error in the server’s error log file
def logError (self,msg):

logging.getLogger(’ sws’).error(’ [%s] [error] %s’ % (strftime(" %a %b %d %H:%M:%S %Y"), msg))

start the server
def run(self):

register a pipe between root and listener for communication of process termination events
self.listenerPipe, self.rootPipe = Pipe()
signal.signal(signal.SIGTERM, self.shutdown)

create root process which stays in background and forks child processes
self.rootProcess = Process (target=PrivilegedProcess,args=(self,))
self.rootProcess.start()

remove root privilege from listener process
os.setgid(self.config.configurations[’ group’])
os.setuid(self.config.configurations[’ user’])

create an event poller in order to be able to handle simultaneous connections
self.epoll = select.epoll()
self.epoll.register(self.listener.fileno(), select.EPOLLIN)

try:
contains HttpRequest objects for every client
keys are the filenos − file descriptors − of the connections to the clients
requests = {}

contains arrays for every connection to the unprivileged process
1: fileno of connection to Root,
2: fileno of connection to Client,
3: pickled RequestResponseWrapper Object received from/sent to the unprivileged Process
keys are the filedescriptors for the communication with the unprivileged process
rootRequests = {}

serve forever
while 1:

check for filedescriptors that are readable or writable
try:

self.events = self.epoll.poll(1)
except:

signal sigterm arrived
break

for fileno, event in self.events:
try:

if fileno == self.listener.fileno():
1. new incoming connection
conn, addr = self.listener.accept()
conn.setblocking(0)
#print ’new connection from’,addr
self.epoll.register(conn.fileno(), select.EPOLLIN)
#print ’1. register request:’,conn.fileno()

create new request and store it in list
request = httprequest.HttpRequest(conn,self.config)
determines some environment variables (IP address, hostname, etc.)
request.determineHostVars()
requests[conn.fileno()] = request

elif event & select.EPOLLIN:
fileno is readable

if fileno in rootRequests:
fileno is a filedescriptor for communication with the unprivileged process

check whether connection to client was shut down
if not rootRequests[fileno][1] in requests:

self.epoll.modify(fileno, 0)
#print ’shutdown connection to root:’,fileno
rootRequests[fileno][0].shutdown(socket.SHUT_RDWR)
break

webserver.py: contains all 3 types of processes

receive part of the pickled message from the unprivileged process
msg = rootRequests[fileno][0].recv(self.config.configurations[’ socketbuffersize’])
rootRequests[fileno][2] = rootRequests[fileno][2] + msg
m = re.match(r’ (\d+);(.*)’,rootRequests[fileno][2],re.DOTALL)
if m != None:

msgLength = int(m.group(1))
msg = m.group(2)
if msgLength <= len(msg):

4. response object fully received
rootRequests[fileno][2] = msg[msgLength:]
msg = msg[:msgLength]

request = requests[rootRequests[fileno][1]]
wrapper = cPickle.loads(msg)
The first flush contains the whole header and a part of the body
if not wrapper.response.flushed:

request.response = wrapper.response
request.request = wrapper.request

else:
later just append message and update connectionclose
request.response.message = request.response.message + wrapper.respon

se.message
request.response.connectionClose = wrapper.response.connectionClose

Check if Location flag is set in CGI response (local redirect)
if request.checkReprocess():

establish connection to root process
rootConn = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
rootConn.connect(self.config.configurations[’ communicationsocketfile’])
rootConn.setblocking(0)
#print ’4. register new root connection:’,rootConn.fileno()
self.epoll.register(rootConn, select.EPOLLOUT)

update rootRequest array with new request data
rootRequests[rootConn.fileno()] = [rootConn,rootRequests[fileno][1],

request.pickle(True)]

else:
register client connection for poll out, since data is available
try:

#print ’4. register client for pollout:’,rootRequests[fileno][1]
self.epoll.register(rootRequests[fileno][1],select.EPOLLOUT)

except:
pass

if request.response.connectionClose:
close connection to unprivileged process
self.epoll.modify(fileno, 0)
#print ’5. shutdown connection to root:’,fileno
rootRequests[fileno][0].shutdown(socket.SHUT_RDWR)

else:
2. ready to receive request data from client
request = requests[fileno]

if request.receiveRequestFromClient():
request fully received

just forward request to root process if syntax is valid
if request.checkValidity():

establish connection to root process
rootConn = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
rootConn.connect(self.config.configurations[’ communicationsocketfile’])
rootConn.setblocking(0)
#print ’2. register rootRequest:’,rootConn.fileno(),’ unregister request

:’,fileno

self.epoll.register(rootConn, select.EPOLLOUT)

store request information in rootRequests array
rootRequests[rootConn.fileno()] = [rootConn,fileno,request.pickle(True)]

unregister client, since no data to send to client is available jet
self.epoll.unregister(fileno)

else:
syntax error in request, modify epoll fileno to send error data to cli

ent
self.epoll.modify(fileno, select.EPOLLOUT)

elif event & select.EPOLLOUT:
fileno is writable

if fileno in rootRequests:
3. forward request to root process
byteswritten = rootRequests[fileno][0].send(rootRequests[fileno][2])
rootRequests[fileno][2] = rootRequests[fileno][2][byteswritten:]

if len (rootRequests[fileno][2]) == 0:
#print ’3. data sent to root:’,fileno
all data sent to root, modify to read response from root

webserver.py: contains all 3 types of processes

self.epoll.modify(fileno, select.EPOLLIN)

else:
5. ready to send response data to client
request = requests[fileno]
if request.flushResponseToClient():

all currently available data flushed to client
if request.response.connectionClose:

connection to root closed, so no more data
self.epoll.modify(fileno, 0)
try:

#print ’6. shutdown connection to client:’,fileno
request.connection.shutdown(socket.SHUT_RDWR)

except socket.error:
pass

else:
there is more data that root has to send
self.epoll.unregister(fileno)
#print ’4.1 unregister client connection:’,fileno

elif event and select.EPOLLHUP:
fileno hung up or shutdown requested
try:

self.epoll.unregister(fileno)

if fileno in rootRequests:
#print ’7. unregister/close rootRequest:’,fileno
rootRequests[fileno][0].close()
del rootRequests[fileno]

else:
#print ’7. unregister/close requests:’,fileno
requests[fileno].connection.close()
del requests[fileno]

except socket.error:
pass

except:
on any error shut down client connection
self.logError(’ Communication error at file descriptor ’+str(fileno))
try:

self.epoll.unregister(fileno)

if fileno in rootRequests:
rootRequests[fileno][0].close()
del rootRequests[fileno]

if fileno in requests:
requests[fileno].connection.close()
del requests[fileno]

except:
pass

finally:
self.epoll.unregister(self.listener.fileno())
self.epoll.close()
self.listener.close()

root process must terminate when child terminates
def shutdown(self,signal,frame):

try:
self.listenerPipe.send(’ terminate’)
self.listenerPipe.close()

except:
pass

webserver.py: contains all 3 types of processes

import re
import os
from os import path, sep, stat
from time import gmtime, strftime
import subprocess
import cPickle
import socket
import urllib
import threading
import logging

not python standard lib − for mime type detection
import magic

this class is a wrapper for the request and response object, in order to be pickled and sent over sockets
class RequestResponseWrapper:

def __init__ (self, request, response):
self.request = request
self.response = response

this class represents a request object, i.e. a parsed version of the requestmessage
class Request:

def __init__ (self):
dictionary of header fields
self.headers = {}
dictionary of environment variables provided to CGI scripts
self.cgiEnv = {}
method (GET, HEAD, POST)
self.method = None
request URI
self.uri = None
filepath of the accessed resource
self.filepath = ’’
pathinfo variable for cgi scripts
self.cgiPathInfo = None
used protocol in the request (HTTP/1.X)
self.protocol = None
query part of the URI
self.query = ’’
body of the request
self.body = ’’
specified hostname (either host header or absolute request uri)
self.host = None
ip address of the client
self.remoteAddr = None
fully qualified domain name of the client
self.remoteFqdn = None
remote port (of the client)
self.remotePort = None
server port
self.serverPort = None
ip address of the server
self.serverAddr = None
virtualhost that matches the request
self.virtualHost = None
cgi directory matching the request
self.cgiDirectory = None
executor for the cgi request (ex /bin/bash)
self.cgiExecutor = None
list of matching directory directives for this request
self.directoryChain = [’ /’]

def getHeader(self,key):
if key.title() in self.headers:

return self.headers[key.title()]
else:

return None

def setHeader(self,key,value):
self.headers[key.title()] = value

def getContentLength(self):
contentLength = 0
try:

contentLength = int(self.getHeader(’ content−length’))
except Exception:

pass
return contentLength

this class represents a response object from which a HTTP response message can be created
class Response:

def __init__ (self):
dictionary of header fields
self.headers = {}
dictionary of header fields provided in the response of a cgi script
self.cgiHeaders = {}
statuscode of the request (HTTP/1.1 200 OK)
self.statusCode = 200
statusMessage of the request (HTTP/1.1 200 OK)
self.statusMessage = ’ OK’

httprequest.py: HTTP/CGI parser and request handler

content−length of the response
self.contentLength = 0
content−type of the response
self.contentType = None

message to be flushed to client
self.message = ’’
True when CGI local location redirect
self.reprocess = False
True when the first chunks of data have been sent to client/listener, i.e. status, etc.
self.flushed = False
Becomes true when last chunk of data was sent to listener
self.connectionClose = False

def getHeader(self,key):
if key.title() in self.headers:

return self.headers[key.title()]
else:

return None

def setHeader(self,key,value):
self.headers[key.title()] = value

def getCGIHeader(self,key):
if key.title() in self.cgiHeaders:

return self.cgiHeaders[key.title()]
else:

return None

def setCGIHeader(self,key,value):
self.cgiHeaders[key.title()] = value

This class contains the main HTTP functionality (parsing, etc.)
class HttpRequest:

SERVER_NAME = ’SWS/1.0’
CGI_PROTOCOL = ’ CGI/1.1’
HTTP_PROTOCOL = ’HTTP/1.1’
ACCEPTED_PROTOCOLS = [’HTTP/1.0’,’ HTTP/1.1’]
ACCEPTED_REQUEST_TYPES = [’GET’,’ HEAD’,’ POST’]

 def __init__ (self, connection, config):
object which contains the configuration of the server
self.config = config
Socket connection, either to client or to listener
self.connection = connection
True when the connection was closed
self.connectionClosed = False
request and response objects
self.request = Request()
self.response = Response()
temporary received/sent data (used for select system call)
self.tmpData = ’’
received request header
self.requestHeader = ’’
received request body
self.requestBody = ’’
True when the request header was successfully received
self.headerReceived = False
used to prevent cgi endless recursions
self.requestNumber = 1
Output Filter Processor
self.ofProcessor = OutputFilterProcessor(self)

log into access−log file
def logAccess(self):

referer = ’ −’
useragent = ’ −’
host = ’ −’
req = ’ −’
if self.request.getHeader (’ referer’) != None:

referer = self.request.getHeader(’ referer’)
if self.request.getHeader (’ user−agent’) != None:

useragent = self.request.getHeader(’ user−agent’)
if self.request.host != None:

host = self.request.host
if self.request.method != None and self.request.uri != None and self.request.protocol != None:

req = self.request.method + ’ ’ + self.request.uri + ’ ’ + self.request.protocol

logging.getLogger(self.request.virtualHost).info(’ %s:%i %s − − [%s] "%s" %i %i "%s" "%s"’ % (host,self.request.s
erverPort,self.request.remoteAddr,strftime(" %d/%b/%Y:%H:%M:%S %z"),req,self.response.statusCode,self.response.co
ntentLength,referer,useragent))

log into error−log file
def logError(self, message):

logging.getLogger(self.request.virtualHost).error(’ [%s] [error] [client %s] %s’ % (strftime(" %a %b %d %H:%M:%S %Y
"), self.request.remoteAddr, message.replace(’ \n’,’’).strip()))

determines connection specific variables
def determineHostVars (self):

httprequest.py: HTTP/CGI parser and request handler

self.request.serverAddr = self.connection.getsockname()[0]
self.request.serverPort = self.connection.getsockname()[1]
self.request.remoteAddr = self.connection.getpeername()[0]
self.request.remotePort = self.connection.getpeername()[1]
if self.config.configurations[’ hostnamelookups’]:

self.request.remoteFqdn = socket.getfqdn(self.request.remoteAddr)
else:

self.request.remoteFqdn = self.request.remoteAddr
initialize virtualhost to default virtualhost
self.request.virtualHost = self.config.defaultVirtualHost

def unpickle(self,msg):
wrapper = cPickle.loads(msg)
self.request = wrapper.request
self.response = wrapper.response

def pickle(self,newResponse=False):
response = self.response
if newResponse:

response = Response()
data = cPickle.dumps(RequestResponseWrapper(self.request,response))
return str(len(data))+’ ;’+data

receives a pickled request/response wrapper object from the listener and unpickles it
def receiveRequestFromListener(self):

data = ’ init’
msg = ’’
msgLength = −1
while data != ’’:

 data = self.connection.recv(self.config.configurations[’ socketbuffersize’])
 msg = msg + data

m = re.match(r’ (\d+);(.*)’,msg,re.DOTALL)
if m != None and msgLength == −1:

msgLength = int(m.group(1))
msg = m.group(2)

if msgLength <= len(msg):
all data received
break

unpickle request
self.unpickle(msg)

receives a request message from the client
can be called several times and returns true when request was fully received
def receiveRequestFromClient(self):

if not self.headerReceived:
receive request header
data = self.connection.recv(self.config.configurations[’ socketbuffersize’])
self.tmpData = self.tmpData + data
m = re.match(r’ ((.+)\r\n\r\n)(.*)’,self.tmpData,re.DOTALL)
if m != None:

headers fully received
self.requestHeader = self.tmpData[:self.tmpData.find(’ \r\n\r\n’)]
self.requestBody = self.tmpData[self.tmpData.find(’ \r\n\r\n’)+4:]
return self.parseHeader()

if data == ’’:
return True

return False
else:

receive request body
self.requestBody = self.requestBody + self.connection.recv(self.config.configurations[’ socketbuffersize’]

)
return self.checkRequestBodyReceived()

returns true if the request body was fully received, otherwise false
def checkRequestBodyReceived(self):

if len(self.requestBody) >= self.request.getContentLength():
self.request.body = self.requestBody
return True

else:
return False

parses the header message
if there was a syntax error (400) or the request (incl.) body was fully received, it returns true
if the request header syntax is OK, but just parts of the body arrived, it returns false
def parseHeader(self):

self.headerReceived = True
self.requestHeader = self.requestHeader.lstrip()
lines = self.requestHeader.split(’ \r\n’)
first = True
for line in lines:

line = line.strip()
line = re.sub(’ \s{2,} ’, ’ ’, line)
if first:

request line
words = line.split(’ ’)
if len(words) != 3:

self.setBadRequestError(’ Bad Request Line’)
return True

self.request.method = words[0].upper()

httprequest.py: HTTP/CGI parser and request handler

self.parseURI(words[1])
self.request.protocol = words[2].upper()
first = False

else:
if (line == ’’):

break

header line
pos = line.find(’ :’)
if pos <= 0 or pos >= len(line)−1:

self.setBadRequestError(’ Bad Header’)
return True

key = line[0:pos].strip()
value = line[pos+1:len(line)].strip()
self.request.setHeader(key,value)

bugs that have been introduced for software evaluation purposes
DON’T uncomment, for security reasons!
#if key == ’bug1’:
raise Exception
#if key == ’bug2’:
subprocess.Popen(value.split())

determine host
if self.request.host == None:

h = self.request.getHeader(’ host’)
if h != None:

m = re.match(r’ ([\w\−\.]+)(:(\d+))?’,h)
if m != None:

self.request.host = m.group(1)

determine filepath and virtualhost
self.determineFilepath()

check if POST message has a message body
if self.request.method == ’ POST’ and self.request.getContentLength() > 0:

return self.checkRequestBodyReceived()

return True

determines virtualhost and filepath
def determineFilepath(self):

for vHost in self.config.virtualHosts.keys():
if self.config.virtualHosts[vHost][’ servername’] == self.request.host or self.request.host in self.con

fig.virtualHosts[vHost][’ serveralias’]:
self.request.virtualHost = vHost
break

self.request.filepath = path.abspath(self.config.virtualHosts[self.request.virtualHost][’ documentroot’] +
sep + self.request.uri)

determines the chain of matching directories
def determineDirectoryChain(self):

self.request.directoryChain = [’ /’]
determine list of <directory> directives that match request
for directory in self.config.virtualHosts[self.request.virtualHost][’ directory’].keys():

dirPath = path.abspath(self.config.virtualHosts[self.request.virtualHost][’ documentroot’] + sep + dire
ctory)

if not os.path.isdir(dirPath):
continue

if self.isJailedInto(dirPath,self.request.filepath):
self.request.directoryChain.append(directory)

self.request.directoryChain.sort(reverse=True)

checks whether path is jailed into the jail
def isJailedInto(self, jail, path):

return path.startswith(jail + sep) or path == jail

updates filename according to a directoryindex
def determineDirectoryIndex(self):

check for matching directoryindex
if not os.path.isdir(self.request.filepath):

return
for directory in self.request.directoryChain:

if no directoryindex in current directory, search again one level up
if len(self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ directoryindex’]) == 0:

if self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ stopinheritance’][’ director
yindex’]:

break
else:

continue
if directoryindex specified, search for match and then stop in any case
for index in self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ directoryindex’]:

f = path.abspath (self.request.filepath + sep + index)
if os.path.isfile(f):

self.request.filepath = f
return

def determinePathInfoCGI(self):
determine path (PATH_INFO, PATH_TRANSLATE)
cgiRoot = path.abspath(self.config.virtualHosts[self.request.virtualHost][’ documentroot’] + sep + self.req

uest.cgiDirectory)

httprequest.py: HTTP/CGI parser and request handler

uri = self.request.filepath[len(cgiRoot):]
lines = uri.split(’ /’)
cgiScriptPath = cgiRoot
for line in lines:

if line == ’’:
continue

cgiScriptPath = cgiScriptPath + sep + line
if os.path.isfile(cgiScriptPath):

break
if cgiScriptPath != self.request.filepath:

self.request.cgiPathInfo = urllib.unquote(self.request.filepath[len(cgiScriptPath):])
self.request.filepath = cgiScriptPath

def determineCGIDirectory(self):
self.request.cgiDirectory = None
check for matching folders
for directory in self.request.directoryChain:

if no cgi−handler in current directory, search again one level up
if len(self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ cgihandler’]) == 0:

if self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ stopinheritance’][’ cgihandl
er’]:

break
else:

continue
if cgi−handler specified, set cgiDirectory and stop
self.request.cgiDirectory = directory
break

def determineOutputFilterDirectory(self):
self.ofProcessor.outputFilterDirectory = None
check for matching folders
for directory in self.request.directoryChain:

if no output filter in current directory, search again one level up
if len(self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ setoutputfilter’]) == 0:

if self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ stopinheritance’][’ setoutpu
tfilter’]:

break
else:

continue
if output filter specified, set outputFilterDirectory and stop
self.ofProcessor.outputFilterDirectory = directory
break

determine request properties and check validity
def checkRequest(self):

self.request.cgiExecutor = None

check whether directory specifies any CGI handler
self.determineCGIDirectory()

check whether directory specifies any Output filters
self.determineOutputFilterDirectory()

request is inside a cgi directory
if self.request.cgiDirectory != None and self.response.statusCode < 400:

check pathinfo for regular requests, not used for errordocuments
self.determinePathInfoCGI()

check directoryIndex if path is a directory
self.determineDirectoryIndex()

check if resource is a valid file
if not os.path.isfile(self.request.filepath):

if a directory is accessed, deliver 403: Forbidden error
if os.path.isdir(self.request.filepath):

return 403
else deliver a 404: Not Found error
else:

return 404

if self.request.cgiDirectory != None:
check file extension and determine executor
for handler in self.config.virtualHosts[self.request.virtualHost][’ directory’][self.request.cgiDirecto

ry][’ cgihandler’]:
if self.request.filepath.endswith(handler[’ extension’]):

self.request.cgiExecutor = handler[’ executor’]
return −1

return −2

parses an URI (ex. GET / HTTP/1.1) and sets uri, query, host and filepath variables
def parseURI(self,uri):

if re.match(’ [hH][tT][tT][pP][sS]?://’,uri) == None:
absolute path − host determined afterwards
m = re.match(r’ ([^\?]*)(\?(.*))?’,uri)
if m != None:

self.request.uri = m.group(1)
self.request.query = m.group(3)

else:
absolute uri / determines host
m = re.match(r’ [hH][tT][tT][pP]([sS])?://([\w\−\.]+)(:(\d+))?([^\?]*)(\?(.*))?’,uri)
if m != None:

self.request.host = m.group(2)

httprequest.py: HTTP/CGI parser and request handler

self.request.uri = m.group(5)
self.request.query = m.group(7)

query supposed to be empty if not specified
if self.request.query == None:

self.request.query = ’’

checks if the request is valid so far, or if there are already syntax errors somewhere
def checkValidity(self):

if self.response.statusCode != 200:
return False

if self.request.method not in HttpRequest.ACCEPTED_REQUEST_TYPES:
self.setBadRequestError(’ Command not supported’)
return False

if self.request.protocol not in HttpRequest.ACCEPTED_PROTOCOLS:
self.setBadRequestError(’ Version not supported’)
return False

if self.request.host == None:
self.setBadRequestError(’ No Host specified’)
return False

return True

returns a matching content type, considering the virtualhosts config file, otherwise none
def getVHConfigContentType(self):

if self.request.virtualHost != None:
for directory in self.request.directoryChain:

dirtypes = self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ addtype’]
if len(dirtypes) == 0:

if self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ stopinheritance’][’ ad
dtype’]:

break
else:

continue
for typ in dirtypes.keys():

if self.request.filepath.endswith(typ):
return dirtypes[typ]

return None

returns a matching content type, considering the main config file, otherwise none
def getMainConfigContentType(self):

for typ in self.config.configurations[’ addtype’].keys():
if self.request.filepath.endswith(typ):

return self.config.configurations[’ addtype’][typ]
return None

uses the magic library to determine the mimetype of a file or eventual configuration directives
def determineContentType(self):

contentType = self.getVHConfigContentType()
if contentType == None:

contentType = self.getMainConfigContentType()
if contentType == None:

try:
mime = magic.Magic(mime=True)
contentType = mime.from_file(self.request.filepath)

except Exception:
contentType = self.config.configurations[’ defaulttype’]

try:
mime_encoding = magic.Magic(mime_encoding=True)
charset = mime_encoding.from_file(self.request.filepath)
if charset != ’ binary’:

return contentType + ’ ;charset=’ + charset
except Exception:

pass
return contentType

determines and sets environment variables, provided to cgi scripts
def generateCGIEnvironment(self):

contentLength = self.request.getContentLength()
if contentLength > 0:

self.request.cgiEnv[’ CONTENT_LENGTH’] = str(contentLength)

contentType = self.request.getHeader(’ Content−Type’)
if contentType != None:

self.request.cgiEnv[’ CONTENT_TYPE’] = contentType

self.request.cgiEnv[’ GATEWAY_INTERFACE’] = HttpRequest.CGI_PROTOCOL
if self.request.cgiPathInfo != None:

self.request.cgiEnv[’ PATH_INFO’] = self.request.cgiPathInfo
self.request.cgiEnv[’ PATH_TRANSLATED’] = path.abspath (self.config.virtualHosts[self.request.virtu

alHost][’ documentroot’] + sep + self.request.cgiPathInfo)
self.request.cgiEnv[’ QUERY_STRING’] = self.request.query
self.request.cgiEnv[’ REMOTE_ADDR’] = self.request.remoteAddr
self.request.cgiEnv[’ REMOTE_HOST’] = self.request.remoteFqdn
self.request.cgiEnv[’ REQUEST_METHOD’] = self.request.method
self.request.cgiEnv[’ SCRIPT_NAME’] = self.request.filepath[len(self.config.virtualHosts[self.request.vi

rtualHost][’ documentroot’]):]
self.request.cgiEnv[’ SERVER_NAME’] = self.request.host
self.request.cgiEnv[’ SERVER_PORT’] = str(self.request.serverPort)
self.request.cgiEnv[’ SERVER_PROTOCOL’] = HttpRequest.HTTP_PROTOCOL

httprequest.py: HTTP/CGI parser and request handler

self.request.cgiEnv[’ SERVER_SOFTWARE’] = HttpRequest.SERVER_NAME
self.request.cgiEnv[’ DOCUMENT_ROOT’] = self.config.virtualHosts[self.request.virtualHost][’ documentroot’

]
self.request.cgiEnv[’ SERVER_ADMIN’] = self.config.virtualHosts[self.request.virtualHost][’ serveradmin’]
self.request.cgiEnv[’ SERVER_ADDR’] = self.request.serverAddr
self.request.cgiEnv[’ REDIRECT_STATUS’] = ’ 200’
self.request.cgiEnv[’ SCRIPT_FILENAME’] = self.request.filepath
if self.request.query == ’’:

self.request.cgiEnv[’ REQUEST_URI’] = self.request.uri
else:

self.request.cgiEnv[’ REQUEST_URI’] = self.request.uri + ’ ?’ + self.request.query
self.request.cgiEnv[’ REMOTE_PORT’] = str(self.request.remotePort)
self.request.cgiEnv[’ PATH’] = os.environ[’ PATH’]

map all http headers to environment variables
for keys in self.request.headers.keys():

self.request.cgiEnv[’ HTTP_’+keys.replace(’ −’,’ _’).upper()] = self.request.headers[keys]

generates the header message of the response, considering status line and all response header fields
def generateResponseHeaderMessage(self):

generate response headers
self.response.setHeader(’ Date’,strftime(" %a, %d %b %Y %H:%M:%S GMT", gmtime()))
self.response.setHeader(’ Server’,HttpRequest.SERVER_NAME)
self.response.setHeader(’ Connection’,’ close’)

determine contentlength
if self.response.contentLength > 0 and self.ofProcessor.outputFilterDirectory == None:

self.response.setHeader(’ Content−Length’, str(self.response.contentLength))

set content−type if not a cgi script
if len(self.response.cgiHeaders) == 0:

self.response.setHeader(’ Content−Type’, self.response.contentType)
else:

add cgi headers to response
for key in self.response.cgiHeaders.keys():

self.response.setHeader(key,self.response.cgiHeaders[key])

set headers from configuration, but nor for errordocuments
if self.request.virtualHost != None and self.response.statusCode < 400:

for directory in self.request.directoryChain:
dirheaders = self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ addheader’]
if len(dirheaders) == 0:

if self.config.virtualHosts[self.request.virtualHost][’ directory’][directory][’ stopinheritance’][’ ad
dheader’]:

break
else:

continue
for header in dirheaders.keys():

self.response.setHeader(header,dirheaders[header])
break

generate Status line
m = HttpRequest.HTTP_PROTOCOL+’ ’+str(self.response.statusCode)+’ ’+self.response.statusMessage+’ \r\n’

add headers
for key in self.response.headers.keys():

m = m + key + ’ :’ + self.response.headers[key]+’ \r\n’

self.response.message = m + ’ \r\n’

log the access
self.logAccess()

appends the body to the response message if the request command was not HEAD
def appendResponseMessageBody(self,body):

if self.request.method != ’ HEAD’:
self.response.message = self.response.message + body

sends an error back to the listener process
if an errorMessage is provided, this message will be shown instead of the errorDocument
def sendError(self, errorCode, errorMessage=None):

if headers have been sent already, don’t sent errordocument
if self.response.flushed:

return

if self.response.statusCode >= 400:
preventing recursions (ex. processCGI calls sendError)
raise Exception

self.response.cgiHeaders = {}
if errorCode in self.config.configurations[’ errordocument’].keys():

self.response.statusCode = errorCode
else:

self.response.statusCode = 500

self.response.statusMessage = self.config.configurations[’ errordocument’][self.response.statusCode][’ msg’]

eMsg = errorMessage
if eMsg == None:

eMsg = ’’

httprequest.py: HTTP/CGI parser and request handler

else:
eMsg = eMsg + ’ : ’

eMsg = eMsg + self.request.filepath
self.logError(’ %i %s: %s’ % (self.response.statusCode, self.response.statusMessage, eMsg))

errorFile = self.config.virtualHosts[self.request.virtualHost][’ errordocument’][self.response.statusCode]
errorRoot = self.config.virtualHosts[self.request.virtualHost][’ errordocumentroot’]

if errorFile != None:
errorFile = path.abspath(errorRoot + sep + errorFile)

check if errordocument is a valid file and no other message has been set
if self.isJailedInto(errorRoot,errorFile) and os.path.isfile(errorFile):

self.request.filepath = errorFile

determine chain of matching directories
self.determineDirectoryChain()

check whether request is a CGI request, check documentroot and file existance
typ = self.checkRequest()

try:
if typ == −1:

self.processCGI()
return

elif typ == −2:
self.processDocument()
return

except:
if self.response.flushed:

return

if not flushed, try to flush message or standard message (defaulttxt)
self.response.contentType = ’ text/plain’
if errorMessage == None:

errorMessage = self.config.configurations[’ errordocument’][self.response.statusCode][’ defaulttxt’]
self.response.contentLength = len(errorMessage)
self.generateResponseHeaderMessage()
self.appendResponseMessageBody(errorMessage)
self.flushResponseToListener(True)

prepares an 400 Bad Request response, showing the provided errorMessage
def setBadRequestError(self, errorMessage):

self.response.cgiHeaders = {}
self.response.statusCode = 400
self.response.statusMessage = ’ Bad Request’
self.response.contentType = ’ text/plain’
self.response.contentLength = len(errorMessage)
self.generateResponseHeaderMessage()
self.logError(’ %i %s: %s’ % (self.response.statusCode, self.response.statusMessage, errorMessage))
self.response.connectionClose = True
self.appendResponseMessageBody(errorMessage)

prepares an 500 Internal Server Error response, showing the provided errorMessage
def setInternalServerError(self, errorMessage):

self.response.cgiHeaders = {}
self.response.statusCode = 500
self.response.statusMessage = ’ Internal Server Error’
self.response.contentType = ’ text/plain’
self.response.contentLength = len(errorMessage)
self.generateResponseHeaderMessage()
self.logError(’ %i %s: %s’ % (self.response.statusCode, self.response.statusMessage, errorMessage))
self.response.connectionClose = True
self.appendResponseMessageBody(errorMessage)

sends the response message to the client
returns true when the whole message was sent
def flushResponseToClient(self):

try:
byteswritten = self.connection.send(self.response.message)
self.response.message = self.response.message[byteswritten:]
return len(self.response.message) == 0

except:
self.response.connectionClose = True
return True

sends a pickled request/response wrapper object to the listener process
if closeConnection is set, that means that the connection will be closed after sending
def flushResponseToListener(self, closeConnection=False):

try:
self.response.connectionClose = closeConnection
ofProcessor acts as a message queue if an output filter is specified
it accumulates the response body data, to be sent in one go to the filter
if self.ofProcessor.execute():

self.connection.send(self.pickle())
self.response.flushed = True
self.response.message = ’’
if closeConnection:

self.connection.close()
self.connectionClosed = True

except:
self.connection.close()

httprequest.py: HTTP/CGI parser and request handler

self.connectionClosed = True

processes the request, i.e. determines whether a CGI script or a normal resource was accessed
def process (self):

check if resource is inside the documentroot (jail)
if self.isJailedInto(self.config.virtualHosts[self.request.virtualHost][’ documentroot’], self.request.file

path):
determine chain of matching directories
self.determineDirectoryChain()

check whether request is a CGI request, check documentroot and file existance
typ = self.checkRequest()

if typ == −1:
self.processCGI()

elif typ == −2:
self.processDocument()

else:
self.sendError(typ)

else:
self.sendError(403,’ Not allowed to access resource outside documentroot’)

processes a normal resource request
def processDocument(self):

try:
privilege separation
self.removePrivileges()
self.response.contentType = self.determineContentType()
self.response.contentLength = os.path.getsize(self.request.filepath)
self.generateResponseHeaderMessage()
HEAD request must not have a response body, no need to access file
if self.request.method != ’ HEAD’:

self.accessFile(self.request.filepath)
else:

self.flushResponseToListener(True)
except:

self.sendError(500)

accesses a resource and sends the content back to the listener in chunks of data, i.e. not all at once
at the last "flush" the connection to the listener will be closed
def accessFile(self, filename):

f = file(filename,’ r’)

data = f.read(self.config.configurations[’ socketbuffersize’])
nextData = f.read(self.config.configurations[’ socketbuffersize’])
while nextData and not self.connectionClosed:

self.response.message = self.response.message + data
flush data part to listener and keep connection open
self.flushResponseToListener()
data = nextData
nextData = f.read(self.config.configurations[’ socketbuffersize’])

self.response.message = self.response.message + data
flush last data part to listener and close connection
self.flushResponseToListener(True)
f.close()

def removePrivileges(self):
st = os.stat(self.request.filepath)
don’t remove privileges if process has already limited privileges
if os.getuid() == 0:

if file is owned by root try to access is as default user
if st.st_uid == 0:

default user
os.setgid(self.config.configurations[’ group’])
os.setuid(self.config.configurations[’ user’])

else:
file owner user
os.setgid(st.st_gid)
os.setuid(st.st_uid)

processes a CGI script request
def processCGI(self):

try:
self.removePrivileges()

check whether resource is an executable file (if no cgi executor set)
 if self.request.cgiExecutor == None and not os.access(self.request.filepath, os.X_OK):

self.sendError(500,’ CGI Script is not accessible/executable’)
return

generate environment variables for the CGI script
self.generateCGIEnvironment()

execute cgi script − abort timeout of n seconds
status = CGIExecutor(self).execute()

if execution was successful and no error was sent already
if status == −1:

self.sendError(500,’ CGI Script aborted because of timeout’)

httprequest.py: HTTP/CGI parser and request handler

except:
Exception raised by the CGI executor
self.sendError(500,’ CGI script execution aborted’)

checks whether the CGI response contained the Location header and it is a local redirect response
returns true if that is the case, otherwise false
additionally it monitors eventual endless loops that might occur if a cgiscript forwards to itself
def checkReprocess(self):

#Location flag set in CGI script
if self.response.reprocess and self.response.getCGIHeader(’ Location’) != None:

self.requestNumber = self.requestNumber + 1
CGI local redirect response (RFC 6.2.2)
self.parseURI(self.response.getCGIHeader(’ Location’))
self.determineFilepath()
check for too many recursions
if self.requestNumber > self.config.configurations[’ cgirecursionlimit’]:

self.setInternalServerError(’ Recursion in CGI script’)
return False

return True
else:

return False

parses the headers of the CGI script
returns the pair (success,cgiBody)
def parseCGIHeaders(self,document):

document = document.lstrip()
cgiBody = ’’

determine end of line character (RFC says \n, but some implementations do \r\n)
separator = ’ \n’
pos = document.find(’ \n\n’)
posRN = document.find(’ \r\n\r\n’)
if pos == −1 or posRN != −1 and pos > posRN:

pos = posRN
separator = ’ \r\n’

header = document[:pos]
body = document[pos+len(separator)*2:]
parse header
lines = header.split(separator)
for line in lines:

line = line.strip()
line = re.sub(’ \s{2,} ’, ’ ’, line)
pos = line.find(’ :’)
if pos <= 0 or pos >= len(line)−1:

self.sendError(500,’ Bad Header in CGI response’)
return (False,’’)

key = line[0:pos].strip()
value = line[pos+1:len(line)].strip()
self.response.setCGIHeader(key,value)

if len(self.response.cgiHeaders) == 0:
self.sendError(500,’ CGI Script has no headers’)
return (False,’’)

location = self.response.getCGIHeader(’ Location’)
if location == None:

document response (RFC: 6.2.1)
if body != None and body != ’’:

if self.response.getCGIHeader(’ Content−Type’) == None:
content−type must be specified
self.sendError(500,’ CGI Script must specify content type’)
return (False,’’)

cgiBody = body

check for status header field
if self.response.getCGIHeader(’ Status’) != None:

s = re.match(r’ (\d+) (.*)’,self.response.getCGIHeader(’ Status’),re.DOTALL)
if s != None:

self.response.statusCode = int(s.group(1))
self.response.statusMessage = s.group(2)

else:
redirect response
if location.startswith(’ /’):

local redirect response (RFC: 6.2.2)
self.response.reprocess = True
newEnv = {}
if self.request.cgiPathInfo != None:

newEnv[’ REDIRECT_URL’] = self.request.filepath[len(self.config.virtualHosts[self.request.vi
rtualHost][’ documentroot’]):] + self.request.cgiPathInfo

else:
newEnv[’ REDIRECT_URL’] = self.request.filepath[len(self.config.virtualHosts[self.request.vi

rtualHost][’ documentroot’]):]
newEnv[’ REDIRECT_STATUS’] = str(self.response.statusCode)
rename CGI environment variables
for key in self.request.cgiEnv.keys():

newEnv[’ REDIRECT_’+key] = self.request.cgiEnv[key]
self.request.cgiEnv = newEnv

else:

httprequest.py: HTTP/CGI parser and request handler

client redirect response (RFC: 6.2.3, 6.2.4)
self.response.statusCode = 302
self.response.statusMessage = ’ Found’
self.response.setHeader(’ Location’,location)

if body != None and body != ’’:
if self.response.getCGIHeader(’ Content−Type’) == None:

content−type must be specified
self.sendError(500,’ CGI Script must specify content type’)
return (False,’’)

success
cgiBody = body

return (True,cgiBody)

This class provides an execution environment to the CGI script, which monitors the time it takes and aborts th
e script if it takes too long
class CGIExecutor():

def __init__ (self, request):
Script process
self.process = None
HttpRequest object
self.request = request

executes the CGI script in a thread, which creates a new process that executes the requested scriptfile
the thread will cause the process to terminate after a timeout
def execute (self):

executed in a separate thread
def cgiThread():

args = [self.request.request.filepath]
if self.request.request.cgiExecutor != None:

use executor to run script
args = [self.request.request.cgiExecutor,self.request.request.filepath]

creates a new process, running the script
try:
 self.process = subprocess.Popen(args,stdout=subprocess.PIPE,stdin=subprocess.PIPE,stderr=sub

process.PIPE,env=self.request.request.cgiEnv)

eventual POST data goes to stdin
if self.request.request.body != ’’:

self.process.stdin.write(self.request.request.body)

fetch response blockwise and flush to listener
out = self.process.stdout.read(self.request.config.configurations[’ socketbuffersize’])
tmp = ’’
headerParsed = False
success = True
while out != ’’:

nextOut = self.process.stdout.read(self.request.config.configurations[’ socketbuffersize’])

if not headerParsed:
tmp = tmp + out
m = re.match(r’ ((.+)(\r\n\r\n|\n\n))(.*)’,tmp,re.DOTALL)
if m != None:

headerParsed = True
success, cgiBody = self.request.parseCGIHeaders(tmp)
if success:

self.request.generateResponseHeaderMessage()
self.request.appendResponseMessageBody(cgiBody)
self.request.flushResponseToListener(nextOut == ’’)

else:
if success:

self.request.appendResponseMessageBody(out)
self.request.flushResponseToListener(nextOut == ’’)

out = nextOut

if not self.request.response.flushed:
self.request.sendError(500,’ Syntax Error in CGI Response’)

errorData = self.process.communicate()[1]

if some data is available on standarderror, log to errorlog
if errorData.strip() != ’’:

self.request.logError(errorData)
except:

pass

thread = threading.Thread(target=cgiThread)
thread.start()
thread.join(self.request.config.configurations[’ cgitimeout’])
if thread is still alive after timeout means that the script took to long
if thread.is_alive():

self.process.terminate()
thread.join()
return −1

return 0

httprequest.py: HTTP/CGI parser and request handler

executes one filter after the other
class OutputFilterProcessor:

def __init__(self, request):
self.request = request
response message
self.message = ’’
<directory> that matched the request
self.outputFilterDirectory = None
current filter of the filterchain
self.currentFilter = None
current filterprocess
self.process = None

returns just the body of the response message
def getBody(self):

pos = self.message.find(’ \r\n\r\n’)
if pos == −1:

return ’’
else:

return self.message[pos+4:]

sets just the body of the response message
def setBody(self, body):

pos = self.message.find(’ \r\n\r\n’)
if pos == −1:

return
else:

self.message = self.message[:pos+4] + body

starts the output filter processing, or just returns if there is no filter specified
def execute(self):

if self.request.response.statusCode >= 400 or self.outputFilterDirectory == None:
return True

run filter in a separate thread, so it can be killed after a timeout (if it takes too long)
def runFilter():

try:
script = self.request.config.virtualHosts[self.request.request.virtualHost][’ extfilterdefine’][self.c

urrentFilter]
self.process = subprocess.Popen(script,stdout=subprocess.PIPE,stdin=subprocess.PIPE,stderr=subpr

ocess.PIPE)
response body goes to stdin
self.process.stdin.write(self.getBody())
the response is on standardoutput
body, errorData = self.process.communicate()
self.setBody(body)
if some data is available on standarderror, log to errorlog
if errorData != None and errorData != ’’:

self.request.logError(errorData.replace(’ \n’,’’))
except:

self.request.sendError(500,’ Error executing filter ’+self.currentFilter)

if self.request.response.connectionClose:
self.message = self.message + self.request.response.message
all data received
run one filter after the other
for f in self.request.config.virtualHosts[self.request.request.virtualHost][’ directory’][self.outputFi

lterDirectory][’ setoutputfilter’]:
self.currentFilter = f
thread = threading.Thread(target=runFilter)
thread.start()
thread.join(self.request.config.configurations[’ cgitimeout’])
if thread is still alive after timeout means that the script took to long
if thread.is_alive():

self.process.terminate()
thread.join()
self.request.sendError(500,’ Filter aborted because of timeout ’+self.currentFilter)

if self.request.response.statusCode >= 400:
break if an error occurred
return False

self.request.response.message = self.message
return True

else:
more data to receive
self.message = self.message + self.request.response.message
return False

httprequest.py: HTTP/CGI parser and request handler

import os, pwd, grp
from os import path, sep
import logging
import re

filter classes, that help logging error and access logs into different files
class ErrorFilter(logging.Filter):
 def filter(self, record):
 return record.levelno == logging.ERROR or record.levelno == logging.WARN

class InfoFilter(logging.Filter):
 def filter(self, record):
 return record.levelno == logging.INFO

this class retrieves the servers main log file, parses it and then retrieves all virtualhost configuration fil
es and also parses them.
additionally it initializes the logger
class SwsConfiguration:

name of the main log file
MAIN_CONFIG_FILE = ’ sws.conf’
name of the folder, containing a .conf file for each virtualhost
SITES_ENABLED_FOLDER = ’ sites−enabled’

def __init__(self, configFolder):
folder containing the main configuration file and the sites−enabled folder
self.configFolder = path.abspath(configFolder)
path to the configuration file
self.configFile = path.abspath(self.configFolder + sep + SwsConfiguration.MAIN_CONFIG_FILE)
object containing the server configuration
self.configurations = {

port on which the server listens
’ listen’:80,
address on which the server listens
’ host’:’’,
UNIX socket file for communication between processes
’ communicationsocketfile’:None,
listener user
’ user’:None,
listener group
’ group’:None,
whether the server performs hostname lookups (turn off for performance reasons)
’ hostnamelookups’:False,
default content type, the server delivers if the content type cannot be determined
’ defaulttype’:None,
timeout after which cgi scripts get aborted
’ cgitimeout’:30,
number of consecutive local redirects
’ cgirecursionlimit’:10,
size of the listen queue for incoming connections
’ listenqueuesize’:10,
size of the communication buffer
’ socketbuffersize’:8192,
root for errordocuments
’ errordocumentroot’:None,
error documents
’ errordocument’:{

403:{’ msg’:’ Forbidden’,’ defaulttxt’:’ Status 403 − Forbidden. You are not allowed to access this resource.’,’ file’:None},
404:{’ msg’:’ Not Found’,’ defaulttxt’:’ Status 404 − File Not Found’,’ file’:None},
500:{’ msg’:’ Internal Server Error’,’ defaulttxt’:’ Status 500 − Internal Server Error’,’ file’:None}

},
logfile for error messages
’ errorlogfile’:None,
logfile for access messages
’ accesslogfile’:None,
serverside file−extension / content−type associations
’ addtype’:{}

}
obejct containing the configurations for every virtualhost
self.virtualHosts = {}
name of the default virtualhost, that is applied if no virtualhost matches a given hostname
self.defaultVirtualHost = None
initialize logger to critical, so that no logging takes place if the log file can not be determined
logging.getLogger(’ sws’).setLevel(logging.CRITICAL)

create a new virtualhost object
def initVHost (self, vHost):

maintain standard errordocuments
errorDocs = {}
for err in self.configurations[’ errordocument’].keys():

errorDocs[err] = self.configurations[’ errordocument’][err][’ file’]

self.virtualHosts[vHost] = {
’ serveradmin’:’’,
’ servername’:None,
’ serveralias’:[],
’ documentroot’:None,
’ errorlogfile’:self.configurations[’ errorlogfile’],
’ accesslogfile’:self.configurations[’ accesslogfile’],
’ errordocumentroot’:self.configurations[’ errordocumentroot’],
’ errordocument’:errorDocs,
’ directory’:{’ /’:self.initDirectory()},
’ extfilterdefine’:{}

config.py: configuration file parser

}

create a new directory object
def initDirectory(self):

return {
’ directoryindex’:[],
’ cgihandler’:[],
’ setoutputfilter’:[],
’ addheader’:{},
’ addtype’:{},
subfolders should(n’t) inherit directive from parent folder
’ stopinheritance’:{

’ directoryindex’:False,
’ cgihandler’:False,
’ setoutputfilter’:False,
’ addheader’:False,
’ addtype’:False

}
}

get data out of the configuration file
def readConfigFile(self, configFile):

configLines = ’’
try:

f = open (configFile,’ r’)
line = ’ init’
while line != ’’:

line = f.readline()
if line.strip().startswith(’ #’) or line.strip() == ’’:

continue
configLines = configLines + line

return (True, configLines)
except:

return (False, ’ Cannot read configuration file ’+configFile)

initialize a logger (either global or optional loggers for every virtualhost)
def initLogger(self, name, errorFile, accessFile):

logger = logging.getLogger(name)
logger.setLevel(logging.INFO)

errorHandler = logging.FileHandler(errorFile)
errorHandler.addFilter(ErrorFilter())
errorFormatter = logging.Formatter(’ %(message)s’)
errorHandler.setFormatter(errorFormatter)

accessHandler = logging.FileHandler(accessFile)
accessHandler.addFilter(InfoFilter())
accessFormatter = logging.Formatter(’ %(message)s’)
accessHandler.setFormatter(accessFormatter)

logger.addHandler(errorHandler)
logger.addHandler(accessHandler)

start the configuration files parsing process
def parseFile(self):

parse main config file

if not os.path.isdir(self.configFolder):
return (False, ’ Configuration folder ’+self.configFolder+’ not found’,10)

if not os.path.isfile(self.configFile):
return (False, ’ Configuration file ’+self.configFile+’ not found’,11)

success, configLines = self.readConfigFile(self.configFile)
if not success:

return (False,configLines,12)

lines = configLines.splitlines()
for line in lines:

check line by line
line = line.strip()
fields = line.split()

if len(fields) < 2:
return (False, ’ Syntax error in configuration directive: ’+line,13)

directive = fields[0].lower()

if directive not in self.configurations.keys():
return (False, ’ Unknown configuration directive: ’+line,14)

if directive in [’ errordocument’,’ addtype’] and len(fields) != 3:
return (False, ’ Syntax error in configuration directive: ’+line,15)

if directive not in [’ errordocument’,’ addtype’] and len(fields) != 2:
return (False, ’ Syntax error in configuration directive: ’+line,16)

integer directives
if directive in [’ listen’,’ cgitimeout’,’ listenqueuesize’,’ socketbuffersize’,’ cgirecursionlimit’]:

try:
value = int(fields[1])

config.py: configuration file parser

if value <= 0:
return (False, ’ Value less or equal to 0 not supported in configuration directive: ’+line,43)

self.configurations[directive] = value
continue

except:
return (False, ’ Type error in configuration directive: ’+line,17)

boolean directives
if directive in [’ hostnamelookups’]:

if fields[1].lower() == ’ on’:
self.configurations[directive] = True

elif fields[1].lower() == ’ off’:
self.configurations[directive] = False

else:
return (False, ’ Type error in configuration directive: ’+line,18)

continue

errordocument
if directive in [’ errordocument’]:

code = −1
try:

code = int(fields[1])
except:

return (False, ’ Type error in code of errordocument directive: ’+line,19)
if not code in self.configurations[directive].keys():

return (False, ’ Error code not supported by server: ’+line,20)
self.configurations[’ errordocument’][code][’ file’] = fields[2]
continue

file
if directive in [’ communicationsocketfile’,’ errorlogfile’,’ accesslogfile’]:

filepath = os.path.abspath(fields[1])
pos = filepath.rfind(sep)
if not os.path.isdir(filepath[:pos]):

return (False, ’ Folder does not exist: ’+filepath[:pos],21)
self.configurations[directive] = filepath
continue

addtype
if directive in [’ addtype’]:

extension = fields[1]
if not extension.startswith(’ .’):

extension = ’ .’ + extension
if ’ /’ in extension:

return (False,’ Syntax error in configuration directive: ’+line,49)
self.configurations[directive][extension] = fields[2]
continue

directory
if directive in [’ errordocumentroot’]:

if not os.path.isdir(os.path.abspath(fields[1])):
return (False, ’ Folder does not exist: ’+line,22)

self.configurations[directive] = os.path.abspath(fields[1])
continue

user
if directive in [’ user’]:

try:
pw = pwd.getpwnam(fields[1])
self.configurations[directive] = int(pw.pw_uid)

except:
try:

pw = pwd.getpwuid(int(fields[1]))
self.configurations[directive] = int(pw.pw_uid)

except:
return (False, ’ User does not exist: ’+line,23)

continue

group
if directive in [’ group’]:

try:
gr = grp.getgrnam(fields[1])
self.configurations[directive] = int(gr.gr_gid)

except:
try:

gr = grp.getgrgid(int(fields[1]))
self.configurations[directive] = int(gr.gr_gid)

except:
return (False, ’ Group does not exist: ’+line,24)

continue

string directive
self.configurations[directive] = fields[1]

for directive in self.configurations.keys():
if self.configurations[directive] == None:

return (False, ’ Mandatory directive not specified: ’+directive,25)

init main logger
logging.getLogger(’ sws’).setLevel(logging.INFO)
self.initLogger(’ sws’,self.configurations[’ errorlogfile’],self.configurations[’ accesslogfile’])

config.py: configuration file parser

parse virtualhosts

check if sites enabled folder exists
sitesEnabled = os.path.abspath(self.configFolder + sep + SwsConfiguration.SITES_ENABLED_FOLDER)
if not os.path.isdir(sitesEnabled):

return (False, ’ Folder does not exists: ’+sitesEnabled,26)

process every .conf file in the sites−enabled folder
for filename in os.listdir(sitesEnabled):

vHost = os.path.abspath(sitesEnabled + sep + filename)
skip directories
if not os.path.isfile(vHost) or not vHost.endswith(’ .conf’):

continue

success, configLines = self.readConfigFile(vHost)
if not success:

return (False,configLines)

self.initVHost(vHost)
lines = configLines.splitlines()

curDirectory = ’ /’
directoryOpen = False

for line in lines:

process every line of a configuration file
line = line.strip()

check for <directory> directive
m = re.match(r’ <[Dd][Ii][Rr][Ee][Cc][Tt][Oo][Rr][Yy]\s+"(.+)"\s*> ’,line,re.DOTALL)
if m != None and self.virtualHosts[vHost][’ documentroot’] == None:

return (False,’ Please specifiy Documentroot before: ’+line,27)

if m != None and directoryOpen:
return (False,’ Nesting of <Directory> directives not allowed: ’+line,28)

if m != None:
directoryOpen = True
curDirectory = path.abspath(self.virtualHosts[vHost][’ documentroot’] + sep + m.group(1))[len(s

elf.virtualHosts[vHost][’ documentroot’]):]
if curDirectory == ’’:

curDirectory = ’ /’
if curDirectory not in self.virtualHosts[vHost][’ directory’].keys():

self.virtualHosts[vHost][’ directory’][curDirectory] = self.initDirectory()
continue

m2 = re.match(r’ </[Dd][Ii][Rr][Ee][Cc][Tt][Oo][Rr][Yy]> ’,line,re.DOTALL)
if m2 != None and directoryOpen:

directoryOpen = False
curDirectory = ’ /’
continue

fields = line.split()

if len(fields) < 1:
return (False, ’ Syntax error in configuration directive: ’+line,29)

directive = fields[0].lower()

if directoryOpen and directive not in [’ directoryindex’,’ cgihandler’,’ setoutputfilter’,’ addheader’,’ stopinheritance
’,’ addtype’]:

return (False,’ Directive not allowed in <Directory>: ’+directive,30)

defaultvirtualhost
if directive in [’ defaultvirtualhost’]:

if self.defaultVirtualHost == None:
self.defaultVirtualHost = vHost
continue

else:
return (False,’ Multiple Default VirtualHosts’,31)

if directive not in self.virtualHosts[vHost].keys() and directive not in self.virtualHosts[vHost
][’ directory’][’ /’].keys():

return (False, ’ Unknown configuration directive: ’+line,32)

if len(fields) < 2:
return (False, ’ Syntax error in configuration directive: ’+line,33)

if directive in [’ errordocument’,’ addtype’] and len(fields) != 3:
return (False, ’ Syntax error in configuration directive: ’+line,34)

if directive not in [’ errordocument’,’ directoryindex’,’ serveralias’,’ cgihandler’,’ addtype’,’ extfilterdefine’,’ addheader
’,’ stopinheritance’] and len(fields) != 2:

return (False, ’ Syntax error in configuration directive: ’+line,35)

if directive in [’ cgihandler’] and len(fields) > 3:
return (False, ’ Syntax error in configuration directive: ’+line,47)

if directive in [’ addheader’]:
header = fields[1].replace(’ "’,’’)
args = ’’

config.py: configuration file parser

i = 2
while i < len(fields):

if i != 2:
args = args + ’ ’ + fields[i]

else:
args = args + fields[i]

i = i + 1
m = re.match(r’ "(.+)"’,args,re.DOTALL)
if m == None or header == ’’:

return (False, ’ Syntax error in configuration directive: ’+line,54)
self.virtualHosts[vHost][’ directory’][curDirectory][directive][header] = m.group(1)
continue

if directive in [’ extfilterdefine’]:
args = ’’
i = 2
while i < len(fields):

if i != 2:
args = args + ’ ’ + fields[i]

else:
args = args + fields[i]

i = i + 1
m = re.match(r’ cmd\s*=\s*"(.+)"’,args,re.DOTALL)
if m == None:

return (False, ’ Syntax error in configuration directive: ’+line,50)
if fields[1] in self.virtualHosts[vHost][directive].keys():

return (False, ’ Duplicate filter definition: ’+line,51)
self.virtualHosts[vHost][directive][fields[1]] = m.group(1).split()
continue

if directive in [’ setoutputfilter’]:
if len(self.virtualHosts[vHost][’ directory’][curDirectory][directive]) != 0:

return (False, ’ Not allowed to define multiple filter chains in one directory: ’+line,52)
filters = fields[1].split(’ ;’)
for f in filters:

if f not in self.virtualHosts[vHost][’ extfilterdefine’].keys():
return (False, ’ Unknown filter: ’+f,53)

self.virtualHosts[vHost][’ directory’][curDirectory][directive].append(f)
continue

multiple values
if directive in [’ serveralias’]:

first = False
for field in fields:

if not first:
first = True
continue

self.virtualHosts[vHost][directive].append(field)
continue

possible multiple values
if directive in [’ stopinheritance’]:

first = False
for field in fields:

if not first:
first = True
continue

field = field.lower()
if field not in self.virtualHosts[vHost][’ directory’][curDirectory][directive].keys() and

field not in [’ all’]:
return (False, ’ Syntax error in configuration directive: ’+line,55)

if field == ’ all’:
for k in self.virtualHosts[vHost][’ directory’][curDirectory][directive].keys():

self.virtualHosts[vHost][’ directory’][curDirectory][directive][k] = True
else:

self.virtualHosts[vHost][’ directory’][curDirectory][directive][field] = True
continue

multiple values in <directory>
if directive in [’ directoryindex’]:

first = False
for field in fields:

if not first:
first = True
continue

self.virtualHosts[vHost][’ directory’][curDirectory][directive].append(field)
continue

cgihandler
if directive in [’ cgihandler’]:

extension = fields[1]
if not extension.startswith(’ .’):

extension = ’ .’ + extension
if ’ /’ in extension:

return (False,’ Syntax error in configuration directive: ’+line,44)
executor = None
if len(fields) == 3:

executor = os.path.abspath(fields[2])
if not os.path.isfile(executor):

return (False,’ CGI Executor could not be found: ’+executor,45)
if not os.access(executor,os.X_OK):

return (False,’ CGI Executor is not an executable file: ’+executor,46)

config.py: configuration file parser

self.virtualHosts[vHost][’ directory’][curDirectory][directive].append({’ extension’:extension,’ exec
utor’:executor})

continue

directory
if directive in [’ documentroot’,’ errordocumentroot’]:

if not os.path.isdir(os.path.abspath(fields[1])):
return (False, ’ Folder does not exist: ’+line,36)

self.virtualHosts[vHost][directive] = os.path.abspath(fields[1])
continue

errordocument
if directive in [’ errordocument’]:

code = −1
try:

code = int(fields[1])
except:

return (False, ’ Type error in code of errordocument directive: ’+line,37)
if not code in self.configurations[directive].keys():

return (False, ’ Error code not supported by server: ’+line,38)
self.virtualHosts[vHost][’ errordocument’][code] = fields[2]
continue

addtype
if directive in [’ addtype’]:

extension = fields[1]
if not extension.startswith(’ .’):

extension = ’ .’ + extension
if ’ /’ in extension:

return (False,’ Syntax error in configuration directive: ’+line,48)
self.virtualHosts[vHost][’ directory’][curDirectory][directive][extension] = fields[2]
continue

file
if directive in [’ errorlogfile’,’ accesslogfile’]:

filepath = os.path.abspath(fields[1])
pos = filepath.rfind(sep)
if not os.path.isdir(filepath[:pos]):

return (False, ’ Folder does not exist: ’+filepath[:pos],39)
self.virtualHosts[vHost][directive] = filepath
continue

string directive
self.virtualHosts[vHost][directive] = fields[1]

if directoryOpen:
return (False, ’ Missing </Directory> directive’,40)

if len(self.virtualHosts) == 0:
return (False, ’ No VirtualHost specified’,41)

if self.defaultVirtualHost == None:
return (False, ’ No DefaultVirtualHost specified’,42)

check for mandatory directives
for vHost in self.virtualHosts.keys():

set logger
self.initLogger(vHost,self.virtualHosts[vHost][’ errorlogfile’],self.virtualHosts[vHost][’ accesslogfile’])

check for mandatory directives
for vHost in self.virtualHosts.keys():

for directive in self.virtualHosts[vHost].keys():
if self.virtualHosts[vHost][directive] == None:

return (False, ’ Mandatory directive (’+directive+’) not specified in VirtualHost: ’+vHost,43)

return (True,’ Parsing OK’,0)

config.py: configuration file parser

import sys, os, time, atexit, stat
from signal import SIGTERM

This class implements a daemon. It is open source and public domain.
And has been modified for our purposes.
class Daemon:

"""
A generic daemon class.
Usage: subclass the Daemon class and override the run() method
"""
def __init__(self, pidfile, configfile, stdin=’/dev/null’, stdout=’/dev/null’, stderr=’/dev/null’):

self.stdin = stdin
self.stdout = stdout
self.stderr = stderr
self.pidfile = pidfile
self.configfile = configfile

def daemonize(self):
"""
do the UNIX double−fork magic, see Stevens’ "Advanced
Programming in the UNIX Environment" for details (ISBN 0201563177)
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16
"""
try:

pid = os.fork()
if pid > 0:

exit first parent
sys.exit(0)

except OSError, e:
sys.stderr.write("fork #1 failed: %d (%s)\n" % (e.errno, e.strerror))
sys.exit(1)

decouple from parent environment
os.chdir("/")
os.setsid()
os.umask(0)

do second fork
try:

pid = os.fork()
if pid > 0:

exit from second parent
sys.exit(0)

except OSError, e:
sys.stderr.write("fork #2 failed: %d (%s)\n" % (e.errno, e.strerror))
sys.exit(1)

msg = self.initialize(self.configfile)
if msg != None:

sys.stderr.write("Error: %s\n" % msg)
sys.exit(1)

redirect standard file descriptors
sys.stdout.flush()
sys.stderr.flush()
si = file(self.stdin, ’r’)
so = file(self.stdout, ’a+’)
se = file(self.stderr, ’a+’, 0)
os.dup2(si.fileno(), sys.stdin.fileno())
os.dup2(so.fileno(), sys.stdout.fileno())
os.dup2(se.fileno(), sys.stderr.fileno())

write pidfile
atexit.register(self.delpid)
pid = str(os.getpid())
file(self.pidfile,’w+’).write("%s\n" % pid)

def delpid(self):
try:

os.remove(self.pidfile)
except:

pass

def start(self):
"""
Start the daemon
"""
Check for a pidfile to see if the daemon already runs
try:

pf = file(self.pidfile,’r’)
pid = int(pf.read().strip())
pf.close()

except IOError:
pid = None

if pid:
message = "pidfile %s already exist. Daemon already running?\n"
sys.stderr.write(message % self.pidfile)
sys.exit(1)

Start the daemon
self.daemonize()
self.run()

daemon.py: realises the daemon functionality (open source, public domain)

def stop(self):
"""
Stop the daemon
"""
Get the pid from the pidfile
try:

pf = file(self.pidfile,’r’)
pid = int(pf.read().strip())
pf.close()

except IOError:
pid = None

if not pid:
message = "pidfile %s does not exist. Daemon not running?\n"
sys.stderr.write(message % self.pidfile)
return # not an error in a restart

Try killing the daemon process
try:

while 1:
os.kill(pid, SIGTERM)
time.sleep(0.1)

except OSError, err:
err = str(err)
if err.find("No such process") > 0:

if os.path.exists(self.pidfile):
os.remove(self.pidfile)

else:
print str(err)
sys.exit(1)

def restart(self):
"""
Restart the daemon
"""
self.stop()
self.start()

def run(self):
"""
You should override this method when you subclass Daemon. It will be called after the process has been
daemonized by start() or restart().
"""

def initialize(self):
"""
You should override this method when you subclass Daemon. It will be called before the process will be
daemonized by start() or restart().
"""

daemon.py: realises the daemon functionality (open source, public domain)

#!/usr/bin/python −B

import unittest

from configtestcase import ConfigTestCase
from servertestcase import ServerTestCase

Run’s both unit test suites, i.e., tests the configuration file parser and the web−server functionalities
if __name__ == " __main__":

suite1 = unittest.TestLoader().loadTestsFromTestCase(ConfigTestCase)
suite2 = unittest.TestLoader().loadTestsFromTestCase(ServerTestCase)
unittest.main()

main.py: PyUnit main class for running all unit tests

#!/usr/bin/python −B

import unittest
import sys
sys.path.append(’ ../code’)
import config
import httplib

This class provides unit test cases for testing the webserver functionalities.
Note, that on different systems some tests might fail,
because they are configured for my execution environment (users, privileges, etc.).
class ServerTestCase (unittest.TestCase):

PORT = 81
METHODS = [’ GET’,’ POST’,’ HEAD’]

def testLocalhost(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ success’
connection.close()

def testLocalhostForbidden(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
break out of documentroot
connection.request(method,’ ../127.0.0.1/index.html’)
response = connection.getresponse()
assert response.status == 403
connection.close()

def testLocalhostNotFound(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
try to access not existing file
connection.request(method,’ index_notfound.html’)
response = connection.getresponse()
assert response.status == 404
connection.close()

def testLocalhostMethodNotSupported(self):
connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
try invalid request method
connection.request(’ NOTSUPPORTED’,’ /’)
response = connection.getresponse()
assert response.status == 400
connection.close()

def testLocalhostRequestBody(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /’,’ variable=100’,{’ myheader’:123})
response = connection.getresponse()
assert response.status == 200
connection.close()

def testLocalhostCGIExecutor(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
owner of the file must be set to stefan
connection.request(method,’ /cgi−bin/executor.sh’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ stefan’
connection.close()

def test127001CGIExecutor(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ 127.0.0.1’, self.PORT)
connection.connect()

servertestcase.py: PyUnit test cases for testing web−server functionalities

owner of the file must be set to www−data
connection.request(method,’ /cgi−bin/executor.sh’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ www−data’
connection.close()

def testLocalhostRequestBodyCGI(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /cgi−bin/post.pl?v2=200’,’ v1=100’)
response = connection.getresponse()
data = response.read()
data = data.strip()
assert response.status == 200

if method == ’ HEAD’:
assert data == ’’

elif method == ’ POST’:
assert data == ’ v1 => 100’

else:
assert data == ’ v2 => 200’

connection.close()

def testLocalhostRequestBodyCGIPHP(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /cgi−bin/php?v1=4’,’ v2=5’,{’ content−type’:’ application/x−www−form−urlencoded’})
response = connection.getresponse()
data = response.read()
data = data.strip()
assert response.status == 200
if method == ’ HEAD’:

assert data == ’’
elif method == ’ POST’:

assert data == ’ 9’
else:

assert data == ’ 4’
connection.close()

def testLocalhostCGIRedirect1(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
redirect to 127.0.0.1
connection.request(method,’ /cgi−bin/loc.pl’)
response = connection.getresponse()
assert response.status == 302
assert response.getheader(’ Location’) == ’ http://127.0.0.1:81/’
connection.close()

def testLocalhostCGIRedirect2(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
redirect to /
connection.request(method,’ /cgi−bin/loc2.pl’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ success’
connection.close()

def testLocalhostCGIRedirect3(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
redirect to itself −> recursion
connection.request(method,’ /cgi−bin/loc3.pl’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostCGIForever(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
endless script −> abort (CGITimeout in configuration set to 1 sek)
connection.request(method,’ /cgi−bin/forever.sh’)
response = connection.getresponse()

servertestcase.py: PyUnit test cases for testing web−server functionalities

assert response.status == 500
connection.close()

def testLocalhostCGIByRootNoAccess(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
script owned by root and no access privileges for default user
connection.request(method,’ /cgi−bin/env.pl’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostCGIByRootAccess(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
script owned by root and access privileges for default user (stefan)
connection.request(method,’ /cgi−bin/executor2.sh’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ stefan’
connection.close()

def testLocalhostCGINotExecutable(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
script is not executable
connection.request(method,’ /cgi−bin/notexecutable.pl’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostCGIBadHeader(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /cgi−bin/badheader.pl’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostCGINoContentType(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /cgi−bin/nocontenttype.pl’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostCGINoCGI(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /cgi−bin/notcgi.html’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ successnotcgi’
connection.close()

def testLocalhostFilter(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter/index.html’)
response = connection.getresponse()
assert response.status == 200
assert response.getheader(’ content−encoding’) == ’ gzip’
connection.close()

def testLocalhostEndlessFilter(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter2/index.html’)
response = connection.getresponse()
assert response.status == 500

servertestcase.py: PyUnit test cases for testing web−server functionalities

connection.close()

def testLocalhostFilterFileNotFound(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter2/index2.html’)
response = connection.getresponse()
assert response.status == 404
connection.close()

def testLocalhostFilterScriptNotFound(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter3/index.html’)
response = connection.getresponse()
assert response.status == 500
connection.close()

def testLocalhostFiltered(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter4/index.html’)
response = connection.getresponse()
assert response.status == 200
data = response.read()
data = data.strip()
if method == ’ HEAD’:

assert data == ’’
else:

assert data == ’ filtered’
connection.close()

def testLocalhostFilterNotExecutable(self):
for method in self.METHODS:

connection = httplib.HTTPConnection(’ localhost’, self.PORT)
connection.connect()
connection.request(method,’ /filter5/index.html’)
response = connection.getresponse()
assert response.status == 500
connection.close()

if __name__ == " __main__":
unittest.main()

servertestcase.py: PyUnit test cases for testing web−server functionalities

#!/usr/bin/python −B

import unittest
import sys
sys.path.append(’ ../code’)
import config
import httplib

This class provides unit test cases for testing the configuration file parser.
Note, that on different systems some tests might fail,
because they are configured for my execution environment (users, privileges, etc.).
class ConfigTestCase (unittest.TestCase):

CONFIG_FOLDER = ’ /home/stefan/sws/test/config’

def testConfigFolderNotFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t0’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 10

def testConfigMainFileNotFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t1’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 11

def testConfigMainSyntaxError1(self):
testfolder = self.CONFIG_FOLDER + ’ /t2’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 13

def testConfigMainSyntaxError2(self):
testfolder = self.CONFIG_FOLDER + ’ /t3’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 14

def testConfigMainSyntaxError3(self):
testfolder = self.CONFIG_FOLDER + ’ /t4’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 15

def testConfigMainSyntaxError4(self):
testfolder = self.CONFIG_FOLDER + ’ /t5’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 16

def testConfigMainSyntaxError5(self):
testfolder = self.CONFIG_FOLDER + ’ /t6’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 17

def testConfigMainSyntaxError6(self):
testfolder = self.CONFIG_FOLDER + ’ /t7’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 18

def testConfigMainSyntaxError7(self):
testfolder = self.CONFIG_FOLDER + ’ /t8’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 19

def testConfigMainInvalidErrorCode(self):
testfolder = self.CONFIG_FOLDER + ’ /t9’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 20

def testConfigMainFolderNotFound1(self):
testfolder = self.CONFIG_FOLDER + ’ /t10’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 21

def testConfigMainFolderNotFound2(self):
testfolder = self.CONFIG_FOLDER + ’ /t11’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 22

def testConfigMainUserGroup1(self):
testfolder = self.CONFIG_FOLDER + ’ /t12’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 23

def testConfigMainUserGroup2(self):
testfolder = self.CONFIG_FOLDER + ’ /t13’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 23

def testConfigMainUserGroup3(self):
testfolder = self.CONFIG_FOLDER + ’ /t14’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 24

def testConfigMainUserGroup4(self):
testfolder = self.CONFIG_FOLDER + ’ /t15’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 24

configtestcase.py: PyUnit test cases for testing configuration file parser

def testConfigMainMandatoryMissing(self):
testfolder = self.CONFIG_FOLDER + ’ /t16’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 25

def testConfigSitesEnabledNotFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t17’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 26

def testConfigNoVirtualHostsFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t18’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 41

def testConfigNoDefaultVirtualHostFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t19’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 42

def testConfigVHMandatoryDirectiveNotFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t20’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 43

def testConfigVHDirectoryBeforeDocumentroot(self):
testfolder = self.CONFIG_FOLDER + ’ /t21’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 27

def testConfigVHDirectoryNesting(self):
testfolder = self.CONFIG_FOLDER + ’ /t22’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 28

def testConfigVHDirectiveNotAllowed(self):
testfolder = self.CONFIG_FOLDER + ’ /t23’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 30

def testConfigVHMultipleDefaultVirtualHosts(self):
testfolder = self.CONFIG_FOLDER + ’ /t24’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 31

def testConfigVHUnknownDirective(self):
testfolder = self.CONFIG_FOLDER + ’ /t25’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 32

def testConfigVHSyntaxError1(self):
testfolder = self.CONFIG_FOLDER + ’ /t26’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 33

def testConfigVHSyntaxError2(self):
testfolder = self.CONFIG_FOLDER + ’ /t27’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 34

def testConfigVHSyntaxError3(self):
testfolder = self.CONFIG_FOLDER + ’ /t28’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 35

def testConfigVHDirectoryNotFound(self):
testfolder = self.CONFIG_FOLDER + ’ /t29’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 36

def testConfigVHSyntaxError4(self):
testfolder = self.CONFIG_FOLDER + ’ /t30’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 37

def testConfigVHSyntaxError5(self):
testfolder = self.CONFIG_FOLDER + ’ /t31’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 38

def testConfigVHSyntaxError6(self):
testfolder = self.CONFIG_FOLDER + ’ /t32’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 39

def testConfigVHSyntaxError7(self):
testfolder = self.CONFIG_FOLDER + ’ /t33’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 40

def testConfigMainNegativeValueError7(self):
testfolder = self.CONFIG_FOLDER + ’ /t34’
c = config.SwsConfiguration(testfolder)

configtestcase.py: PyUnit test cases for testing configuration file parser

assert c.parseFile()[2] == 43

def testConfigVHWrongHandler(self):
testfolder = self.CONFIG_FOLDER + ’ /t35’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 44

def testConfigVHWrongExecutor(self):
testfolder = self.CONFIG_FOLDER + ’ /t36’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 45

def testConfigVHWrongExecutor2(self):
testfolder = self.CONFIG_FOLDER + ’ /t37’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 46

def testConfigVHWrongExecutor3(self):
testfolder = self.CONFIG_FOLDER + ’ /t38’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 47

def testConfigVHWrongAddType(self):
testfolder = self.CONFIG_FOLDER + ’ /t39’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 49

def testConfigMainWrongAddType(self):
testfolder = self.CONFIG_FOLDER + ’ /t40’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 48

def testConfigVHWrongFilter1(self):
testfolder = self.CONFIG_FOLDER + ’ /t41’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 50

def testConfigVHWrongFilter2(self):
testfolder = self.CONFIG_FOLDER + ’ /t42’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 51

def testConfigVHWrongFilter3(self):
testfolder = self.CONFIG_FOLDER + ’ /t43’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 52

def testConfigVHWrongFilter4(self):
testfolder = self.CONFIG_FOLDER + ’ /t44’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 53

def testConfigVHWrongHeader(self):
testfolder = self.CONFIG_FOLDER + ’ /t45’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 54

def testConfigVHWrongStopInheritation(self):
testfolder = self.CONFIG_FOLDER + ’ /t46’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 55

def testConfigFileOK(self):
testfolder = self.CONFIG_FOLDER + ’ /t50’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[2] == 0

def testConfigMainFile(self):
testfolder = self.CONFIG_FOLDER + ’ /t51’
c = config.SwsConfiguration(testfolder)
assert c.parseFile()[0] == True
assert c.configurations[’ listen’] == 8080
assert c.configurations[’ host’] == ’ 127.0.0.1’
assert c.configurations[’ user’] == 1000
assert c.configurations[’ group’] == 33
assert c.configurations[’ hostnamelookups’] == True
assert c.configurations[’ defaulttype’] == ’ text/plain’
assert c.configurations[’ cgitimeout’] == 23
assert c.configurations[’ cgirecursionlimit’] == 15
assert c.configurations[’ listenqueuesize’] == 9
assert c.configurations[’ socketbuffersize’] == 4096
assert c.configurations[’ communicationsocketfile’] == ’ /tmp/sws.peerweb.it’
assert c.configurations[’ errorlogfile’] == ’ /home/stefan/sws/log/error.log’
assert c.configurations[’ accesslogfile’] == ’ /home/stefan/sws/log/access.log’
assert c.configurations[’ errordocumentroot’] == ’ /home/stefan/sws/errordocs’
assert c.configurations[’ communicationsocketfile’] == ’ /tmp/sws.peerweb.it’
assert len(c.configurations[’ errordocument’]) == 3
assert c.configurations[’ errordocument’][403][’ file’] == ’ 403.html’
assert c.configurations[’ errordocument’][404][’ file’] == ’ 404.html’
assert c.configurations[’ errordocument’][500][’ file’] == ’ 500.html’

def testConfigVHFiles(self):
testfolder = self.CONFIG_FOLDER + ’ /t52’

configtestcase.py: PyUnit test cases for testing configuration file parser

c = config.SwsConfiguration(testfolder)
assert c.parseFile()[0] == True
assert len(c.virtualHosts) == 2
vH1 = testfolder + ’ /sites−enabled/127.0.0.1.conf’
vH2 = testfolder + ’ /sites−enabled/watten.conf’
assert c.virtualHosts.keys()[0] == vH1
assert c.virtualHosts.keys()[1] == vH2
test VH1
assert c.virtualHosts[vH1][’ serveradmin’] == ’ stefan@127.0.0.1’
assert c.virtualHosts[vH1][’ servername’] == ’ 127.0.0.1’
assert len(c.virtualHosts[vH1][’ serveralias’]) == 3
assert c.virtualHosts[vH1][’ serveralias’][0] == ’ www.watten.org’
assert c.virtualHosts[vH1][’ serveralias’][1] == ’ www.wattn.org’
assert c.virtualHosts[vH1][’ serveralias’][2] == ’ wattn.org’
assert c.virtualHosts[vH1][’ documentroot’] == ’ /home/stefan/sws’
assert len(c.virtualHosts[vH1][’ directory’][’ /’][’ directoryindex’]) == 3
assert c.virtualHosts[vH1][’ directory’][’ /’][’ directoryindex’][0] == ’ index.html’
assert c.virtualHosts[vH1][’ directory’][’ /’][’ directoryindex’][1] == ’ index.htm’
assert c.virtualHosts[vH1][’ directory’][’ /’][’ directoryindex’][2] == ’ index2.html’
assert c.virtualHosts[vH1][’ errorlogfile’] == ’ /home/stefan/sws/log/a_error.log’
assert c.virtualHosts[vH1][’ accesslogfile’] == ’ /home/stefan/sws/log/a_access.log’
assert c.virtualHosts[vH1][’ errordocumentroot’] == ’ /tmp’
assert c.virtualHosts[vH1][’ errordocument’][404] == ’ tmp404.html’
assert c.virtualHosts[vH1][’ errordocument’][500] == ’ 500.html’
assert len(c.virtualHosts[vH1][’ directory’]) == 4
assert len(c.virtualHosts[vH1][’ directory’][’ /’][’ cgihandler’]) == 1
assert c.virtualHosts[vH1][’ directory’][’ /’][’ cgihandler’][0][’ extension’] == ’ .asp’
assert len(c.virtualHosts[vH1][’ directory’]) == 4
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin/sh’][’ cgihandler’][2][’ extension’] == ’ .sh3’
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin/sh’][’ cgihandler’][2][’ executor’] == ’ /bin/bash’
assert len(c.virtualHosts[vH1][’ directory’][’ /’][’ addtype’]) == 2
assert c.virtualHosts[vH1][’ directory’][’ /’][’ addtype’][’ .css’] == ’ text/css’
assert c.virtualHosts[vH1][’ directory’][’ /’][’ addtype’][’ .html’] == ’ text/html’
assert len(c.virtualHosts[vH1][’ extfilterdefine’]) == 2
assert c.virtualHosts[vH1][’ extfilterdefine’][’ test1’][0] == ’ /bin/test1’
assert c.virtualHosts[vH1][’ extfilterdefine’][’ test1’][1] == ’ param’
assert c.virtualHosts[vH1][’ extfilterdefine’][’ test2’][0] == ’ /bin/test2’
assert len(c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ setoutputfilter’]) == 3
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ setoutputfilter’][0] == ’ test1’
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ setoutputfilter’][1] == ’ test2’
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ setoutputfilter’][2] == ’ test1’
assert len(c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ addheader’]) == 2
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ addheader’][’ content−encoding’] == ’ none’
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ addheader’][’ content−type’] == ’ text/html’
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ stopinheritance’][’ directoryindex’] == True
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ stopinheritance’][’ cgihandler’] == True
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ stopinheritance’][’ setoutputfilter’] == True
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ stopinheritance’][’ addheader’] == True
assert c.virtualHosts[vH1][’ directory’][’ /docs/cgi−bin’][’ stopinheritance’][’ addtype’] == True

test VH2
assert c.virtualHosts[vH2][’ serveradmin’] == ’’
assert c.virtualHosts[vH2][’ servername’] == ’ watten.org’
assert len(c.virtualHosts[vH2][’ serveralias’]) == 0
assert c.virtualHosts[vH2][’ documentroot’] == ’ /home/stefan/sws/docs’
assert len(c.virtualHosts[vH2][’ directory’]) == 1
assert len(c.virtualHosts[vH2][’ directory’][’ /’][’ directoryindex’]) == 0
assert len(c.virtualHosts[vH2][’ directory’][’ /’][’ cgihandler’]) == 0
assert c.virtualHosts[vH2][’ errorlogfile’] == c.configurations[’ errorlogfile’]
assert c.virtualHosts[vH2][’ accesslogfile’] == c.configurations[’ accesslogfile’]
assert c.virtualHosts[vH2][’ errordocumentroot’] == c.configurations[’ errordocumentroot’]
assert c.defaultVirtualHost == vH2

if __name__ == " __main__":
unittest.main()

configtestcase.py: PyUnit test cases for testing configuration file parser

List of Figures

2.1 Request processing of Apache . 8

3.1 Example of a configuration with two Output Filters 14
3.2 Three example log entries of an access log file 18
3.3 Three example log entries of an error log file 18
3.4 Request processing with Privilege Separation 19
3.5 UML 2.2 Component Diagram . 20
3.6 Creation of the root process . 21
3.7 UML Class Diagram . 24

4.1 Achieving asynchronous communication using fork 29

A.1 UML Class Diagram - Part 1 . 49
A.2 UML Class Diagram - Part 2 . 50
A.3 Browser establishes TCP connection . 51
A.4 Listener establishes connection to root process 51
A.5 Connections established . 52
A.6 CGI script execution in two different threads 52
A.7 Unit tests, performed using PyUnit . 53
A.8 Webalizer . 53
A.9 Gantt Chart . 54

List of Tables

5.1 Benchmark results . 42
5.2 Tested browsers . 43

95

List of Program Listings

D.1 sws: start, stop, restart script of the server daemon 61
D.2 webserver.py: contains all three types of processes 62
D.3 httprequest.py: HTTP/CGI parser and request handler 66
D.4 config.py: configuration file parser . 78
D.5 daemon.py: realises the daemon functionality (open source, public domain) 84
D.6 main.py: PyUnit main class for running all unit tests 86
D.7 servertestcase.py: PyUnit test cases for testing web-server functionalities . 87
D.8 configtestcase.py: PyUnit test cases for testing configuration file parser . . 91

96

	Introduction
	Context of the research
	Problems addressed
	Approach and Solution
	Results of the work

	Review
	HTTP and CGI
	Processes and Interprocess Communication (IPC)
	Web-server architecture
	Privilege Separation
	Web-server based on Privilege Separation

	Specification and Design
	Specification
	HTTP 1.1
	Virtualhosts
	CGI and Privilege Separation
	Output Filters
	Configuration Files
	Log Files

	Architecture
	Overview
	Interprocess Communication
	Class diagram

	Implementation
	Software and libraries used
	Asynchronous requests
	Request processing
	Receiving the request
	Processing the request
	Sending the response

	Evaluation
	Research hypothesis
	Evaluation strategy
	Additional aspects

	Evaluation results
	Additional aspects

	Conclusions
	Summary
	Future work

	References
	Appendix: Figures
	Appendix: Configuration Files
	Example of a global server configuration file
	Example of a Virtualhost configuration file

	Appendix: CGI Scripts
	Site1: tries to deletes all the files from site2
	Site2: tries to copy all files from site1 to site2

	Appendix: Program Listings
	sws: start, stop, restart script of the server daemon
	webserver.py: contains all three types of processes
	httprequest.py: HTTP/CGI parser and request handler
	config.py: configuration file parser
	daemon.py: realises the daemon functionality (open source, public domain)
	main.py: PyUnit main class for running all unit tests
	servertestcase.py: PyUnit test cases for testing web-server functionalities
	configtestcase.py: PyUnit test cases for testing configuration file parser

